【LQR算法学习】[视频参考B站DR_CAN]【Advanced控制理论】8.5_线性控制器设计_轨迹跟踪(Follow a Desired Path) 文字版

本文记录了通过LQR(Linear Quadratic Regulator)算法设计控制器的过程,旨在实现系统稳定及轨迹跟踪。首先介绍了动机,即通过控制输入调整系统平衡点,确保稳定并达到期望状态。然后详细阐述了状态空间方程的建立和输入设计,最终目标是使特征值实部小于0以实现稳定性。在Simulink中进行了仿真,展示了固定输入和变化输入下的系统响应,强调了轨迹跟踪的挑战及非线性控制的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

DR_CAN是我很喜欢的B站博主。本文的图片来自视频的截图。侵删。
DR_CAN出书了,《控制之美》,欢迎大家购书支持。
本文用于记录学习LQR算法的学习过程。

学习资源:【Advanced控制理论】8.5_线性控制器设计_轨迹跟踪(Follow a Desired Path)
【Advanced控制理论】8.5_线性控制器设计_轨迹跟踪(Follow a Desired Path)


一、动机?

之前系统的平衡点是(0,0)
这部分讲的是系统的开环平衡点是(0,0),所以我们可以控制u,使系统收敛于平衡点。
在这里插入图片描述
在这里插入图片描述
建立了以误差和角速度为状态变量的空间状态方程。此时开环系统的平衡点不是(0,0),所以控制器需要有如下两个作用。

  1. 稳定系统。没啥说的,控制首先要稳定。
  2. 调整平衡点。个人理解是准的要求。
    在这里插入图片描述
    对比之前的(0,0)为平衡点的系统,发现多了三角号那一项,所以在输入中想办法抵消掉。所以新的输入如图。
    在这里插入图片描述
    最后,得到的状态空间方程如图。平衡点也是我们期望的。

在这里插入图片描述
施加输入后,新的系统的平衡点变为(0,0)。我们控制器设计的第二个目标达成。
然后再让特征值的实部小于0,就可以达到稳定的目的。这里是直接给了-1。
? 这里可以使用cost function来确定特征值吗?

二、simmulink仿真

matlab/simulink仿真

可爱的状态空间方程

在这里插入图片描述

如下是上一节的图,可以对比着看一下。
在这里插入图片描述
上节内容结束。

输入为固定值时的响应。
在这里插入图片描述
为啥本节的主题是轨迹跟踪,给一个变换的输入。
在这里插入图片描述
复杂的路线,还需要非线性的控制。<头疼>

总结

感谢DR_CAN提供的讲解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值