YOLOv11训练自己的数据集,YOLOv11网络解析

1 训练自己的数据集

在github搜索ultralytics并下载。

 GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

环境配置不再赘述,本地配置自行搜索教程,若使用云服务器配置更为简单。

数据标注

pip install labelimg

启动标注工具

labelimg

标注格式设置为yolo

数据集划分比例 train:val:test  建议8:1:1 or 7:2:1

 ultralytics提供了从小到大的五个v11模型,一般默认使用yolo11n

并且没有提供训练脚本,你可以再命令行指定训练参数,或创建train.py,将参数提前设置好。

tips:

  1. 若想训练yolo11n,yaml文件指定为yolo11n.yaml,若想训练yolo11s,yaml文件指定为yolo11s.yaml,以此类推
  2. 若不想加载预训练权重 ,model.load('') # loading pretrain weights保持注释状态,加载预训练权重的话,权重与yaml文件对应。
  3. Windows系统中将workers设置为大于1的值可能会报错
  4. 需要修改为自己的路径
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO


if __name__ == '__main__':
    model = YOLO('./ultralytics/cfg/models/11/yolo11s.yaml')
    # model.load('') # loading pretrain weights
    model.train(data='./dataset/pest.yaml',
                cache=False,
                imgsz=640,
                epochs=150,
                batch=8,
                close_mosaic=0,
                workers=11,
                # device='0',
                optimizer='SGD', # using SGD
                patience=50, # close earlystop
                # resume=True, # 断点续训,YOLO初始化时选择last.pt
                # amp=False, # close amp
                # fraction=0.2,
                project='runs/train',
                name='exp',
                )

训练完成后,进行验证

若你没有测试集,split需设置为val

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO


if __name__ == '__main__':
    model = YOLO('./runs/train/exp/weights/best.pt')
    model.val(data='./dataset/pest.yaml',
              split='test',
              imgsz=640,
              batch=16,
              # iou=0.7,
              # rect=False,
              # save_json=True, # if you need to cal coco metrice
              project='runs/test',
              name='exp',
              )

 在本人的数据集中,yolo11实现了优于目前大部分主流模型的性能。

2 YOLO11网络解析

yolo11网络的yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

总体上的网络对比

 在网络结构中,未发生变化的模块为白色。

YOLO11网络同样由backbone 、neck和head三部分组成。相较于YOLOv8,backbone部分有10层,C2f替换为C3k2,SPPF后新增了C2PSA模块;neck部分的C2f同样替换为C3k2,其余模块无变动;head部分将原始检测头优化为更为轻量化的检测头。

模块对比

C2f improvement

code:

class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

class C3k2(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )


class C3k(C3):
    """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
        """Initializes the C3k module with specified channels, number of layers, and configurations."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))

class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

C3k2相较于C2f模块区别较小,当c3k2==False时,中间的模块为bottleneck,否则则为c3。给了操作者一个自定义模型的选择。

C2PSA模块相当于将C2f模块中的bottleneck替换为PSA block,PSA模块由一个attention模块和一个前向回馈网络组成(两层convolution),并采用了残差连接。

code:

class C2PSA(nn.Module):
    """
    C2PSA module with attention mechanism for enhanced feature extraction and processing.

    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.

    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.

    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.

    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)
    """

    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))

    def forward(self, x):
        """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = self.m(b)
        return self.cv2(torch.cat((a, b), 1))

class PSABlock(nn.Module):
    """
    PSABlock class implementing a Position-Sensitive Attention block for neural networks.

    This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
    with optional shortcut connections.

    Attributes:
        attn (Attention): Multi-head attention module.
        ffn (nn.Sequential): Feed-forward neural network module.
        add (bool): Flag indicating whether to add shortcut connections.

    Methods:
        forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.

    Examples:
        Create a PSABlock and perform a forward pass
        >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
        >>> input_tensor = torch.randn(1, 128, 32, 32)
        >>> output_tensor = psablock(input_tensor)
    """

    def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
        """Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
        super().__init__()

        self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
        self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
        self.add = shortcut

    def forward(self, x):
        """Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
        x = x + self.attn(x) if self.add else self.attn(x)
        x = x + self.ffn(x) if self.add else self.ffn(x)
        return x
class Attention(nn.Module):
    """
    Attention module that performs self-attention on the input tensor.

    Args:
        dim (int): The input tensor dimension.
        num_heads (int): The number of attention heads.
        attn_ratio (float): The ratio of the attention key dimension to the head dimension.

    Attributes:
        num_heads (int): The number of attention heads.
        head_dim (int): The dimension of each attention head.
        key_dim (int): The dimension of the attention key.
        scale (float): The scaling factor for the attention scores.
        qkv (Conv): Convolutional layer for computing the query, key, and value.
        proj (Conv): Convolutional layer for projecting the attended values.
        pe (Conv): Convolutional layer for positional encoding.
    """

    def __init__(self, dim, num_heads=8, attn_ratio=0.5):
        """Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim**-0.5
        nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        """
        Forward pass of the Attention module.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            (torch.Tensor): The output tensor after self-attention.
        """
        B, C, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
            [self.key_dim, self.key_dim, self.head_dim], dim=2
        )

        attn = (q.transpose(-2, -1) @ k) * self.scale
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
        x = self.proj(x)
        return x

lightweight detect head

code:


class Detect(nn.Module):
    """YOLOv8 Detect head for detection models."""

    dynamic = False  # force grid reconstruction
    export = False  # export mode
    end2end = False  # end2end
    max_det = 300  # max_det
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(
            nn.Sequential(
                nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                nn.Conv2d(c3, self.nc, 1),
            )
            for x in ch
        )
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

        if self.end2end:
            self.one2one_cv2 = copy.deepcopy(self.cv2)
            self.one2one_cv3 = copy.deepcopy(self.cv3)

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        if self.end2end:
            return self.forward_end2end(x)

        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:  # Training path
            return x
        y = self._inference(x)
        return y if self.export else (y, x)

    def forward_end2end(self, x):
        """
        Performs forward pass of the v10Detect module.

        Args:
            x (tensor): Input tensor.

        Returns:
            (dict, tensor): If not in training mode, returns a dictionary containing the outputs of both one2many and one2one detections.
                           If in training mode, returns a dictionary containing the outputs of one2many and one2one detections separately.
        """
        x_detach = [xi.detach() for xi in x]
        one2one = [
            torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl)
        ]
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:  # Training path
            return {"one2many": x, "one2one": one2one}

        y = self._inference(one2one)
        y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
        return y if self.export else (y, {"one2many": x, "one2one": one2one})

    def _inference(self, x):
        """Decode predicted bounding boxes and class probabilities based on multiple-level feature maps."""
        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4 :]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

        if self.export and self.format in {"tflite", "edgetpu"}:
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            grid_h = shape[2]
            grid_w = shape[3]
            grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * grid_size)
            dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
        else:
            dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

        return torch.cat((dbox, cls.sigmoid()), 1)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)
        if self.end2end:
            for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride):  # from
                a[-1].bias.data[:] = 1.0  # box
                b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

    def decode_bboxes(self, bboxes, anchors):
        """Decode bounding boxes."""
        return dist2bbox(bboxes, anchors, xywh=not self.end2end, dim=1)

    @staticmethod
    def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80):
        """
        Post-processes YOLO model predictions.

        Args:
            preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
                format [x, y, w, h, class_probs].
            max_det (int): Maximum detections per image.
            nc (int, optional): Number of classes. Default: 80.

        Returns:
            (torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
                dimension format [x, y, w, h, max_class_prob, class_index].
        """
        batch_size, anchors, _ = preds.shape  # i.e. shape(16,8400,84)
        boxes, scores = preds.split([4, nc], dim=-1)
        index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1)
        boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4))
        scores = scores.gather(dim=1, index=index.repeat(1, 1, nc))
        scores, index = scores.flatten(1).topk(min(max_det, anchors))
        i = torch.arange(batch_size)[..., None]  # batch indices
        return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1)

yolo11的检测头依旧采用了双分支的设计,在负责分类的分支中,将标准卷积替换为深度可分离卷积(Depthwise Separable Convolution,DSConv),降低了模型的双量。

DSConv其实就是一个深度卷积(Depthwise Convolution,DWConv)加上一个点卷积(1*1卷积)

不懂的可以看下面这个,DSConv是一种轻量卷积。

标准卷积、深度可分离卷积与GSConv,YOLOv8引入SlimNeck-CSDN博客

懒得码字了,直接把代码喂给gpt4o......

有不理解的可以把代码pull下来交给ai分析

Q:分析这个检测头的结构

A

这个 `Detect` 类是一个基于 YOLOv8 的检测头,它专门为目标检测模型设计,用来生成边界框预测和类别预测。以下是其结构和关键部分的分析:

### 1. **类属性**
   - `dynamic`:布尔变量,用于控制是否强制重建网格。默认为 `False`。
   - `export`:控制是否处于导出模式(用于模型转换,例如 `tflite`、`tfjs`)。默认为 `False`。
   - `end2end`:布尔值,表示是否启用端到端的推理模式。
   - `max_det`:最大检测数量,默认为 `300`。
   - `anchors` 和 `strides`:用于存储生成的锚点和步幅,初始化为空张量。
   - `shape`:保存输入张量的形状,用于推理时检测是否需要重新生成锚点。

### 2. **初始化方法 (`__init__`)**
   - `nc`:类别数,默认设置为 80 个类别(如 COCO 数据集)。
   - `ch`:通道数,表示输入特征图的通道数列表,对应不同检测层。
   - `reg_max`:用于计算 DF-Loss(分布式 Focal Loss)的参数,默认值为 16。
   - `no`:每个锚点的输出通道数,计算方式为 `nc + reg_max * 4`,即类别数加上四个边界框回归值。
   - `stride`:保存各个特征层的步幅,初始化为全零张量。
   - `cv2`:卷积层模块列表,专用于回归边界框预测。这些模块包含多个卷积操作。
   - `cv3`:卷积层模块列表,专用于类别预测。
   - `dfl`:分布式 Focal Loss 层,使用该层对边界框的回归输出进行处理。

   > 主要特征:
   - `cv2` 用于预测边界框,而 `cv3` 用于类别分类。
   - 使用 `DFL` 处理边界框回归,以提供更精确的预测。

### 3. **前向传播 (`forward`)**
   - **普通前向传播**:
     - 输入 `x` 是来自多个检测层的特征图。
     - 对每个特征图分别通过 `cv2` 和 `cv3` 进行边界框和类别预测,然后将它们串联。
     - 如果处于训练模式下,返回处理后的特征图。如果是推理模式,则调用 `_inference` 进行解码。
   - **端到端推理 (`forward_end2end`)**:
     - 该模式下,在处理特征图时会额外生成 `one2one` 检测结果(单一锚点)。
     - 推理时使用 `postprocess` 对 `one2one` 的结果进行后处理。

### 4. **推理方法 (`_inference`)**
   - 在推理阶段,使用 `_inference` 函数对模型的预测结果进行后处理。
   - 将所有特征层的输出通过 `cat` 函数串联在一起,并在必要时生成锚点(`make_anchors`)。
   - 根据是否处于导出模式,将预测拆分为边界框预测和类别预测。
   - 解码预测边界框,应用 `DFL` 进行回归,最终返回预测的边界框和分类得分。

### 5. **偏置初始化 (`bias_init`)**
   - 用于初始化类别预测的偏置权重,确保类别预测有一个较为合理的初始状态。比如在类别预测中,将偏置初始化为一个较大的负值,以防止初期阶段产生过多的错误检测。

### 6. **边界框解码 (`decode_bboxes`)**
   - 该函数使用锚点将模型的输出解码为实际的边界框坐标。
   - `dist2bbox` 用于将回归输出(一般为偏移或比例)转换为实际的边界框坐标。

### 7. **后处理 (`postprocess`)**
   - 后处理阶段,将网络的原始预测进一步筛选、排序,并返回最终的检测结果,包括边界框坐标、得分和类别。
   - 主要是通过对类别预测的最大概率值进行 `top-k` 筛选,然后根据其索引来获取对应的边界框。

### 总结
- 这个检测头设计用于多层特征图检测,通过卷积和深度可分离卷积分别进行边界框和类别的预测。并且通过 `DFL` 实现更精确的回归预测。
- 它支持端到端的检测模式和多种导出格式(如 `tflite` 等),使其能够适应不同的部署需求。
- 在推理阶段,能够根据不同的模式处理不同数量的检测结果,并且通过偏置初始化和锚点生成来优化模型的性能。

Q:分析这部分的结构
        self.cv3 = nn.ModuleList(
            nn.Sequential(
                nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                nn.Conv2d(c3, self.nc, 1),
            )
            for x in ch
        ) 

 

A:这部分代码片段实现了 `Detect` 类中的 `cv3` 属性,它是一个 `nn.ModuleList`,用于创建一系列卷积模块,每个模块与输入特征图的通道数 `ch` 相关联。`cv3` 主要用于类别预测,并结合了多种卷积操作。以下是该结构的详细分析:

### 1. **代码结构简介**
```python
self.cv3 = nn.ModuleList(
    nn.Sequential(
        nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),  # 第一个子模块
        nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),  # 第二个子模块
        nn.Conv2d(c3, self.nc, 1),  # 类别预测卷积层
    )
    for x in ch
)
```
- 这个 `cv3` 是 `Detect` 类的一个属性,使用 `nn.ModuleList` 包装了多个由 `nn.Sequential` 组合而成的卷积模块。
- 每个 `nn.Sequential` 中包含多个卷积层,用于不同的特征图进行处理。
- `cv3` 的作用是为每个输入特征图生成对应的类别预测(即每个目标的类别得分)。

### 2. **具体模块的功能**
#### a. **第一层 `nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1))`**
- **`DWConv(x, x, 3)`**:
  - `DWConv` 是深度可分离卷积(Depthwise Convolution),使用输入通道 `x` 和输出通道 `x`。
  - 内核大小为 3 × 3,输入和输出的通道数相同。
  - 这种卷积方式比标准卷积操作的计算量要低很多,适合在模型的某些层进行降维或保留特征的处理。
- **`Conv(x, c3, 1)`**:
  - 这是一个标准卷积层,用 1 × 1 的卷积核将 `DWConv` 的输出进行进一步处理。
  - 它的作用是将 `x` 通道的特征图转换为 `c3` 通道。
  - `c3` 是初始化时定义的通道数,它的计算方式依赖于输入特征图的通道数 `ch` 和类别数 `nc`。

#### b. **第二层 `nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1))`**
- **`DWConv(c3, c3, 3)`**:
  - 这又是一个深度可分离卷积操作,输入和输出通道数都是 `c3`。
  - 该层主要用于进一步提取和细化特征,同时保持较低的计算复杂度。
- **`Conv(c3, c3, 1)`**:
  - 使用 1 × 1 的卷积核将特征进行处理,并保持通道数为 `c3`。
  - 该层的作用是进行跨通道的信息整合,同时减少参数量和计算量。

#### c. **第三层 `nn.Conv2d(c3, self.nc, 1)`**
- 这是一个标准的二维卷积层,使用 1 × 1 的卷积核将 `c3` 通道的特征图转化为 `nc` 通道的特征图。
- 其中,`nc` 是类别数,用于最终的类别预测。
- 这一层的作用是将特征图映射到类别维度上,即输出的每个通道都对应一个目标类别的预测得分。

### 3. **cv3 的总体作用**
- `cv3` 的每个模块作用于对应层次的特征图(如高分辨率、小分辨率特征图等),通过卷积操作来生成目标检测中的类别预测。
- 其设计思路是通过多种卷积(包括深度可分离卷积和标准卷积)来在不同尺度特征图上提取类别信息,从而提高分类的精确度。
- 最后的 `nn.Conv2d` 层将特征图映射到类别维度,输出的每个通道都表示某个目标类别的预测值。

### 4. **深度可分离卷积的优势**
- 使用 `DWConv`(深度可分离卷积)能够有效减少计算复杂度和参数量。
- 相比于标准卷积,深度可分离卷积将卷积操作分为两个部分:
  - **深度卷积**:在每个输入通道上单独进行卷积,保留空间维度上的特征。
  - **逐点卷积**:使用 1 × 1 的卷积核在所有通道之间进行信息整合,从而生成新的特征图。
- 这种方式既能保持卷积层的空间特征提取能力,又能通过较少的参数实现跨通道的信息融合,是一种计算量更低的卷积操作。

### 5. **总结**
- `cv3` 是 `Detect` 模块中专门用于类别预测的卷积模块,通过不同类型的卷积操作对输入特征进行处理。
- 它采用深度可分离卷积结合标准卷积,以减少计算量和提高效率,同时在保持性能的前提下提供精确的类别预测。
- 该模块在 YOLOv8 检测头中与 `cv2`(用于边界框回归的模块)共同作用,完成目标检测任务中的位置和类别预测。

我的内容可能有误,如发现请指正。 

Reference:

YOLO11 沉浸式讲解 YOLOV11网络结构以及代码剖析-CSDN博客

YOLOv8(You Only Look Once version 8)是一种实时物体检测算法,它在YOLO系列中属于较新的版本。训练自己的数据集主要是为了让你的模型能够识别特定场景下的物体。以下是训练YOLOv8自定义数据集的一般步骤: 1. 数据准备:收集或创建包含目标类别及其标注的图像数据集。每个图片应该有对应的目标框位置信息和类别标签。 2. 数据预处理:使用YOLOv8提供的工具,如darknet的数据转换脚本(data_generator.py),将图片和标签转换成Darknet所需的文件格式,通常为`.txt`和`.cfg`配置文件。 3. 定制配置文件:修改`yolov8.cfg`配置文件,更改网络结构、锚点和其他超参数以适应你的数据集特性。 4. 准备Darknet库:确保安装了正确的版本,并设置环境变量指向darknet源码目录。 5. 搭建训练环境:如果你是在GPU环境下,可以使用CUDA和cuDNN加速训练过程。如果使用CPU,则需调整batch size以适应计算资源。 6. 开始训练:运行命令行工具,例如`./darknet train data/your_dataset cfg/yolov8.cfg yolov8.weights`,这里`your_dataset`是你的数据集路径,`yolov8.weights`是初始权重文件(可以选择预训练模型或从头开始训练)。 7. 监控和调整:训练过程中会生成日志,观察损失函数和mAP等指标,根据需要调整学习率、批次大小等参数。 8. 评估和验证:定期保存训练进度,使用验证集测试模型性能并优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值