参考帖子:SHAP 可视化解释机器学习模型简介_shap图-CSDN博客
今日任务
1.参考上述文档补全剩余的几个图
2.尝试确定一下shap各个绘图函数对于每一个参数的尺寸要求
3.确定分类问题和回归问题的数据如何才能满足尺寸,分类采取信贷数据集,回归采取单车数据集。
# 先运行之前预处理好的代码
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('data.csv') #读取数据
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
运行结果:
SHAP 原理简介
目标: 理解复杂机器学习模型(尤其是“黑箱”模型,如随机森林、梯度提升树、神经网络等)为什么会对特定输入做出特定预测。 SHAP 提供了一种统一的方法来解释模型的输出。
核心思想:合作博弈论中的 Shapley 值
SHAP (SHapley Additive exPlanations) 的核心基于博弈论中的 Shapley 值概念。想象一个合作游戏:
- 玩家 (Players): 模型的特征 (Features) 就是玩家。
- 游戏 (Game): 目标是预测某个样本的输出值。
- 合作 (Coalition): 不同的特征子集可以“合作”起来进行预测。
- 奖励/价值 (Payout/Value): 某个特征子集进行预测得到的值。
- 目标: 如何公平地将最终预测结果(相对于平均预测结果的“收益”)分配给每个参与的特征(玩家)?
Shapley 值的计算思路(概念上):
为了计算一个特定特征(比如“特征 A”)对某个预测的贡献(它的 Shapley 值),SHAP 会考虑:
- 所有可能的特征组合(子集/联盟): 从没有特征开始,到包含所有特征。
- 特征 A 的边际贡献: 对于每一个特征组合,比较“包含特征 A 的组合的预测值”与“不包含特征 A 但包含其他相同特征的组合的预测值”之间的差异。这个差异就是特征 A 在这个特定组合下的“边际贡献”。
- 加权平均: Shapley 值是该特征在所有可能的特征组合中边际贡献的加权平均值。权重确保了分配的公平性。
SHAP 的关键特性 (加性解释 - Additive Explanations):
SHAP 的一个重要特性是加性 (Additive)。这意味着:
- 基准值 (Base Value / Expected Value): 这是模型在整个训练(或背景)数据集上的平均预测输出。可以理解为没有任何特征信息时的“默认”预测。
- SHAP 值之和: 对于任何一个样本的预测,所有特征的 SHAP 值加起来,再加上基准值,就精确地等于该样本的模型预测值。
模型预测值(样本 X) = 基准值 + SHAP值(特征1) + SHAP值(特征2) + ... + SHAP值(特征N)
为什么会生成 shap_values
数组?
根据上述原理,SHAP 需要为每个样本的每个特征计算一个贡献值(SHAP 值):
- 解释单个预测: SHAP 的核心是解释单个预测结果。
- 特征贡献: 对于这个预测,我们需要知道每个特征是把它往“高”推了,还是往“低”推了(相对于基准值),以及推了多少。
- 数值化: 这个“推力”的大小和方向就是该特征对该样本预测的 SHAP 值。
因此:
-
对于回归问题:
- 模型只有一个输出。
- 对
n_samples
个样本中的每一个,计算n_features
个特征各自的 SHAP 值。 - 这就自然形成了形状为
(n_samples, n_features)
的数组。shap_values[i, j]
代表第i
个样本的第j
个特征对该样本预测值的贡献。
-
对于分类问题:
- 模型通常为每个类别输出一个分数或概率。
- SHAP 需要解释模型是如何得到每个类别的分数的。
- 因此,对
n_samples
个样本中的每一个,分别为每个类别计算n_features
个特征的 SHAP 值。 - 最常见的组织方式是返回一个列表,列表长度等于类别数。列表的第
k
个元素是一个(n_samples, n_features)
的数组,表示所有样本的所有特征对预测类别k
的贡献。 shap_values[k][i, j]
代表第i
个样本的第j
个特征对该样本预测类别k
的贡献。
总结:
SHAP 通过计算每个特征对单个预测(相对于平均预测)的边际贡献(Shapley 值),提供了一种将模型预测分解到每个特征上的方法。这种分解对于每个样本和每个特征(以及分类问题中的每个类别)都需要进行,因此生成了我们看到的 shap_values
数组结构。
shap库可解释性分析
import shap
import matplotlib.pyplot as plt
# 初始化 SHAP 解释器
explainer = shap.TreeExplainer(rf_model)
# 计算 SHAP 值(基于测试集),这个shap_values是一个numpy数组,表示每个特征对每个样本的贡献值
# 这里大家先知道这是个numpy数组即可,我们后面学习完numpy在来回头解读这个值
shap_values = explainer.shap_values(X_test) # 这个计算耗时
1.SHAP 特征重要性条形图
# --- 1. SHAP 特征重要性条形图 (Summary Plot - Bar) ---
print("--- 1. SHAP 特征重要性条形图 ---")
shap.summary_plot(shap_values[:, :, 0], X_test, plot_type="bar",show=False) # 这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Bar Plot)")
plt.show()

2.SHAP 特征重要性蜂巢图
# --- 2. SHAP 特征重要性蜂巢图 (Summary Plot - Violin) ---
print("--- 2. SHAP 特征重要性蜂巢图 ---")
shap.summary_plot(shap_values[:, :, 0], X_test,plot_type="violin",show=False,max_display=10) # 这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Violin Plot)")
plt.show()
# 注意下上面几个参数,plot_type可以是bar和violin,max_display表示显示前多少个特征,默认是20个
3. SHAP 依赖图
print("--- 3. SHAP 依赖图 ---")
shap.dependence_plot('Monthly Debt', shap_values[:,:,0], X_test,
display_features=X_test,
interaction_index='Credit Score',show=False)
plt.title("SHAP Dependence Plot")
plt.show()
4. SHAP 力图
print("--- 4. SHAP 力图 ---")
shap.force_plot(explainer.expected_value[0],
shap_values[:,:,0][0],
X_test.iloc[0],
matplotlib=True,
show=False,
text_rotation=30)
plt.title("SHAP Force Plot for Single Sample")
plt.show()
5. SHAP 决策图
print("--- 5. SHAP 决策图 ---")
shap.decision_plot(explainer.expected_value[0],
shap_values[:,:,0][50],
X_test.iloc[:50],
feature_order='hclust',
show=False)
plt.title("SHAP Decision Plot")
plt.show()
重要提示:都知道shap_values
是个三维数组,它这三个维度,分别对应着样本数量、特征数量,还有个额外维度。先看shap_values[:,:,0][0]
,这里面这个0,
它是从这个三维数组里,把第三个维度(也就是额外维度)的第一个切片给取出来。这么操作完,三维数组就变成二维的了。你就想象一个三层的书架,这个操作就像是只把最上面那一层书架拿出来,其他两层先不管。这个新得到的二维数组,每一行代表一个样本,每一列代表一个特征。再来说说后面那个0
,也就是shap_values[:,:,0][0]
里的第二个0
。前面不是已经得到一个二维数组了嘛,这个0
就是从这个二维数组里选出第一行数据。这一选,二维数组就变成一维的了。打个比方,就像从刚才拿出来的那层书架上,只挑了第一本书。这 “一本书” 里存的,就是第一个样本在咱们前面选的那个额外维度切片下,所有特征的 SHAP 值。
如果按照shap_values[0][0]可能会出现shap_values的实际数据和形状不匹配的情况,我反复试验了好久一直找不到这个错误,但是在某些情况这样写可以的。还是要具体情况具体分析
样本数量、特征数量。