day14 python shap可视化

参考帖子:SHAP 可视化解释机器学习模型简介_shap图-CSDN博客

今日任务
1.参考上述文档补全剩余的几个图
2.尝试确定一下shap各个绘图函数对于每一个参数的尺寸要求
3.确定分类问题和回归问题的数据如何才能满足尺寸,分类采取信贷数据集,回归采取单车数据集。

# 先运行之前预处理好的代码

import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据


# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。

# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集
from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))

运行结果:


SHAP 原理简介

目标: 理解复杂机器学习模型(尤其是“黑箱”模型,如随机森林、梯度提升树、神经网络等)为什么会对特定输入做出特定预测。 SHAP 提供了一种统一的方法来解释模型的输出。

核心思想:合作博弈论中的 Shapley 值

SHAP (SHapley Additive exPlanations) 的核心基于博弈论中的 Shapley 值概念。想象一个合作游戏:

  1. 玩家 (Players): 模型的特征 (Features) 就是玩家。
  2. 游戏 (Game): 目标是预测某个样本的输出值。
  3. 合作 (Coalition): 不同的特征子集可以“合作”起来进行预测。
  4. 奖励/价值 (Payout/Value): 某个特征子集进行预测得到的值。
  5. 目标: 如何公平地将最终预测结果(相对于平均预测结果的“收益”)分配给每个参与的特征(玩家)?

Shapley 值的计算思路(概念上):

为了计算一个特定特征(比如“特征 A”)对某个预测的贡献(它的 Shapley 值),SHAP 会考虑:

  1. 所有可能的特征组合(子集/联盟): 从没有特征开始,到包含所有特征。
  2. 特征 A 的边际贡献: 对于每一个特征组合,比较“包含特征 A 的组合的预测值”与“不包含特征 A 但包含其他相同特征的组合的预测值”之间的差异。这个差异就是特征 A 在这个特定组合下的“边际贡献”。
  3. 加权平均: Shapley 值是该特征在所有可能的特征组合中边际贡献的加权平均值。权重确保了分配的公平性。

SHAP 的关键特性 (加性解释 - Additive Explanations):

SHAP 的一个重要特性是加性 (Additive)。这意味着:

  • 基准值 (Base Value / Expected Value): 这是模型在整个训练(或背景)数据集上的平均预测输出。可以理解为没有任何特征信息时的“默认”预测。
  • SHAP 值之和: 对于任何一个样本的预测,所有特征的 SHAP 值加起来,再加上基准值,就精确地等于该样本的模型预测值
    模型预测值(样本 X) = 基准值 + SHAP值(特征1) + SHAP值(特征2) + ... + SHAP值(特征N)

为什么会生成 shap_values 数组?

根据上述原理,SHAP 需要为每个样本的每个特征计算一个贡献值(SHAP 值):

  1. 解释单个预测: SHAP 的核心是解释单个预测结果。
  2. 特征贡献: 对于这个预测,我们需要知道每个特征是把它往“高”推了,还是往“低”推了(相对于基准值),以及推了多少。
  3. 数值化: 这个“推力”的大小和方向就是该特征对该样本预测的 SHAP 值

因此:

  • 对于回归问题:

    • 模型只有一个输出。
    • 对 n_samples 个样本中的每一个,计算 n_features 个特征各自的 SHAP 值。
    • 这就自然形成了形状为 (n_samples, n_features) 的数组。 shap_values[i, j] 代表第 i 个样本的第 j 个特征对该样本预测值的贡献。
  • 对于分类问题:

    • 模型通常为每个类别输出一个分数或概率。
    • SHAP 需要解释模型是如何得到每个类别的分数的。
    • 因此,对 n_samples 个样本中的每一个分别为每个类别计算 n_features 个特征的 SHAP 值。
    • 最常见的组织方式是返回一个列表,列表长度等于类别数。列表的第 k 个元素是一个 (n_samples, n_features) 的数组,表示所有样本的所有特征对预测类别 k 的贡献。
    • shap_values[k][i, j] 代表第 i 个样本的第 j 个特征对该样本预测类别 k 的贡献。

总结:

SHAP 通过计算每个特征对单个预测(相对于平均预测)的边际贡献(Shapley 值),提供了一种将模型预测分解到每个特征上的方法。这种分解对于每个样本和每个特征(以及分类问题中的每个类别)都需要进行,因此生成了我们看到的 shap_values 数组结构。

shap库可解释性分析

import shap
import matplotlib.pyplot as plt
 
# 初始化 SHAP 解释器
explainer = shap.TreeExplainer(rf_model)
 
# 计算 SHAP 值(基于测试集),这个shap_values是一个numpy数组,表示每个特征对每个样本的贡献值
# 这里大家先知道这是个numpy数组即可,我们后面学习完numpy在来回头解读这个值
shap_values = explainer.shap_values(X_test) # 这个计算耗时

1.SHAP 特征重要性条形图

# --- 1. SHAP 特征重要性条形图 (Summary Plot - Bar) ---
print("--- 1. SHAP 特征重要性条形图 ---")
shap.summary_plot(shap_values[:, :, 0], X_test, plot_type="bar",show=False)  #  这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Bar Plot)")
plt.show()


2.SHAP 特征重要性蜂巢图

# --- 2. SHAP 特征重要性蜂巢图 (Summary Plot - Violin) ---
print("--- 2. SHAP 特征重要性蜂巢图 ---")
shap.summary_plot(shap_values[:, :, 0], X_test,plot_type="violin",show=False,max_display=10) # 这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Violin Plot)")
plt.show()
# 注意下上面几个参数,plot_type可以是bar和violin,max_display表示显示前多少个特征,默认是20个

3. SHAP 依赖图

print("--- 3. SHAP 依赖图 ---")
shap.dependence_plot('Monthly Debt', shap_values[:,:,0], X_test, 
                    display_features=X_test,
                    interaction_index='Credit Score',show=False)
plt.title("SHAP Dependence Plot")
plt.show()

4. SHAP 力图

print("--- 4. SHAP 力图 ---")
shap.force_plot(explainer.expected_value[0],
                shap_values[:,:,0][0],
                X_test.iloc[0],
                matplotlib=True,
                show=False,
                text_rotation=30)
plt.title("SHAP Force Plot for Single Sample")
plt.show()

5. SHAP 决策图

print("--- 5. SHAP 决策图 ---")
shap.decision_plot(explainer.expected_value[0], 
                shap_values[:,:,0][50], 
                X_test.iloc[:50], 
                feature_order='hclust',
                show=False)
plt.title("SHAP Decision Plot")
plt.show()

重要提示:都知道shap_values是个三维数组,它这三个维度,分别对应着样本数量、特征数量,还有个额外维度。先看shap_values[:,:,0][0],这里面这个0,它是从这个三维数组里,把第三个维度(也就是额外维度)的第一个切片给取出来。这么操作完,三维数组就变成二维的了。你就想象一个三层的书架,这个操作就像是只把最上面那一层书架拿出来,其他两层先不管。这个新得到的二维数组,每一行代表一个样本,每一列代表一个特征。再来说说后面那个0,也就是shap_values[:,:,0][0] 里的第二个0。前面不是已经得到一个二维数组了嘛,这个0就是从这个二维数组里选出第一行数据。这一选,二维数组就变成一维的了。打个比方,就像从刚才拿出来的那层书架上,只挑了第一本书。这 “一本书” 里存的,就是第一个样本在咱们前面选的那个额外维度切片下,所有特征的 SHAP 值。

如果按照shap_values[0][0]可能会出现shap_values的实际数据和形状不匹配的情况,我反复试验了好久一直找不到这个错误,但是在某些情况这样写可以的。还是要具体情况具体分析样本数量、特征数量。

@浙大疏锦行

### 使用 Python 实现 SHAP可视化 为了更好地理解机器学习模型的行为,SHAPShapley Additive Explanations)提供了一种有效的方法来解释个体预测以及整体特征的重要性。以下是具体实现 SHAP可视化的几种方式。 #### 单个预测的 SHAP可视化 通过 `shap.force_plot` 函数可以展示特定样本上各个特征对最终预测的影响程度。此函数能够直观地显示出哪些因素推动了决策过程,并且支持HTML交互式图表输出[^2]。 ```python import shap # 初始化 JavaScript 渲染环境 shap.initjs() # 绘制单个预测实例的 SHAPshap.force_plot( expected_value=expected_values[1], shap_values=shap_values[1][0], features=X_val.iloc[0], feature_names=data.feature_names ) ``` #### 特征重要性的全局视图 利用 `shap.summary_plot` 可以绘制出所有测试集中各特征平均绝对 SHAP 值大小排序后的柱状图,从而帮助识别最重要的几个输入变量。 ```python # 展示总体特征重要度排名 shap.summary_plot( shap_values=shap_values[1], features=X_val, feature_names=data.feature_names ) ``` #### 单独查看某个特征影响 如果想要深入了解某一特定属性的作用机制,则可借助于 `shap.dependence_plot` 来观察该特性与其他维度之间的关系变化趋势及其对应的 SHAP 效应分布情况。 ```python # 探讨 'mean radius' 这一特征的效果 shap.dependence_plot( ind="mean radius", shap_values=shap_values[1], features=X_val, feature_names=data.feature_names ) ``` 上述三种类型的图形化表示形式各有侧重,可以根据实际需求灵活选用或组合应用,以便更全面深刻地解析复杂黑箱模型内部运作原理[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值