【Windows】Deepseek本地化部署 + Ollama + Chatbox + OpenWeb UI

一、OLLAMA安装并下载Deepseek模型

官网下载OLLAMA:https://ollama.com/
安装OLLAMA

1.1 检查ollama安装是否成功

ollama --version

在这里插入图片描述
能输出版本号(如ollama version is 0.5.7)说明安装成功。

1.2 获取模型文件

ollama pull deepseek-r1:1.5b # 如果要获取其他参数的模型则更改1.5b即可

1.3 管理模型

ollama list

管理模型

1.4 运行模型

ollama run deepseek-r1:1.5b

运行本地模型

退出可输入:/bye

二、Chatbox AI

2.1 下载Chatbox

官网下载:https://chatboxai.app/zh
Chatbox官网在这里插入图片描述
在这里插入图片描述

2.2 编辑环境变量

注意!!关闭OLLAMA程序,在开始栏搜索“编辑系统环境变量”。
在这里插入图片描述
在这里插入图片描述

新建2个系统变量:

变量名:OLLAMA_HOST ——> 变量值:0.0.0.0
变量名:OLLAMA_ORIGINS ——> 变量值:*

2.3 回到chatbox选择模型

在这里插入图片描述

2.4 开始对话

在这里插入图片描述

三、OpenWeb UI

建议使用 Docker 部署,不需要配置环境,避免环境冲突的影响。

3.1 安装Docker

官网下载:https://www.docker.com/
Docker Desktop for Windows 需要 WSL 2支持。如果出现以下报错,说明没有启动WSL,需要以管理员身份打开 PowerShell,执行以下命令安装WSL2内核

参考:https://blog.csdn.net/coder_copy/article/details/141425540

在这里插入图片描述
win11执行以下命令,将把 WSL 2 设置为默认版本。如果您的系统中没有安装 WSL 2 内核,则会自动下载并安装(win10同样)。

wsl --set-default-version 2

如果 WSL 2 内核更新失败,可以尝试手动更新。

wsl --update

3.2 修改代理

参考:https://blog.csdn.net/qq_53795212/article/details/139690567

3.2.1 添加代理(本地找不到的容器会自动到网上去找)

添加后点 Apply
在这里插入图片描述

3.2.2 添加镜像(加快下载速度)

添加后点 Apply

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "features": {
    "buildkit": true
  },
  "registry-mirrors": [
    "https://1nj0zren.mirror.aliyuncs.com",
    "https://docker.mirrors.ustc.edu.cn",
    "http://f1361db2.m.daocloud.io",
    "https://registry.docker-cn.com"
  ]
}

在这里插入图片描述

3.3 通过 docker 下载 Open WebUI

(已安装OLLAMA的情况下)

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

在这里插入图片描述
此时Docker Desktop也显示容器已运行。
在这里插入图片描述

如果要修改Docker镜像保存的位置:
在这里插入图片描述
可改为在这里插入图片描述

安装后,可以通过http://localhost:3000访问 Open WebUI 。
创建账户后,选择模型,即完成。
在这里插入图片描述

3.4 可能存在的问题

File upload hangs, unable to upload files.

不同情形的报错解决方式有所区别:
参考1:https://github.com/open-webui/open-webui/discussions/7898
参考2:https://linux.do/t/topic/237176
参考3:https://docs.openwebui.com/

在这里插入图片描述
👆Docker的此种日志,似乎可以忽略:The message “Collection …does not exist” seems to be normal. An older instance, where the upload still worked, gives the same error.

硅基流动测试"Pro/deepseek-ai/Deepseek-R1"模型提示余额不足,其它模型正常

这个模型仅支持充值余额支付,免费送的不能用。

参考:https://github.com/songquanpeng/one-api/issues/2063

需要修改openwebui的版本

docker rm -f open-webui
#假设要安装v0.5.18版本(如果是最新版,那就是main)
docker pull ghcr.io/open-webui/open-webui:v0.5.18
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v D:\Programs\DockerData\open-webui:/app/backend/data --name open-webui ghcr.io/open-webui/open-webui:v0.5.18

需要下载ollama其他模型

参考:https://blog.csdn.net/AAI666666/article/details/145469781

(1)Ollama模型下载路径相关设置
变量名:OLLAMA_MODELS
变量值:(你想要存放大语言模型的路径,举例说明:我想把模型存放在E盘Github code文件夹下的OLLAMAMODEL这个文件夹中,那么变量值就输入如下)E:\Github code\OLLAMAMODEL
在这里插入图片描述

(2)进入Ollama的模型图书馆找找模型:https://ollama.com/library
在这里插入图片描述

四、其他设备访问电脑本地部署的模型(2种方法)

4.1 同一个局域网下访问 + OpenWeb UI设立创建用户权限(可选)

原理:在同一个WiFi下,将自己的电脑变成服务器,他人可以通过手机或电脑来访问localhost下的web项目。

“同一局域网”参考:https://blog.csdn.net/weixin_41897680/article/details/107846205
“开放工作区”参考: https://blog.csdn.net/kangweijian/article/details/145423603

4.1.1 关闭防火墙

在这里插入图片描述

4.1.2 查询本地IP

在这里插入图片描述

4.1.3 创建用户账号

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.1.4 设置账号权限

在这里插入图片描述

4.1.5 添加模型到工作区

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.1.6 开放给他人使用

将url前缀由localhost改为部署本地模型的主机IP地址,如:192.168.x.x:3000/

4.2 创建隧道访问

“内网穿透实现公网访问本地大语言模型”参考: https://blog.csdn.net/qq_28413709/article/details/138210544

4.2.1 下载cpolar

注册登录并下载:https://www.cpolar.com
在这里插入图片描述

4.2.2 创建隧道

  1. 安装成功后在浏览器访问http://localhost:9200,使用已经注册好的账号登录
    在这里插入图片描述
  2. 创建一个公网http地址隧道

隧道名称:ollama1(自定义命名,注意不要与已有的隧道名称重复)
协议:http
本地地址:3000 (本地访问的地址)
域名类型:免费选择随机域名 地区:选择China Top

  1. 创建好后可以选择在线隧道列表,复制公网网址即可实现公网访问本地模型。
    在这里插入图片描述
### Chatbox 的本地部署方法及投喂数据教程 #### 一、硬件与环境准备 为了成功完成 Chatbox 的本地部署以及后续的训练数据投喂操作,需要满足一定的硬件条件软件环境设置。以下是具体的准备工作: - **硬件需求** 部署模型所需的最低硬件配置取决于所选的具体模型大小。例如,对于较小规模的模型(如7B),至少需要8GB RAM i5 处理器;而对于更大规模的模型,则可能需要更高规格的工作站甚至 GPU 支持 CUDA 加速[^4]。 - **操作系统支持** 推荐使用 Linux 或 macOS 系统作为开发环境,因为这些平台提供了更好的兼容性稳定性。如果必须在 Windows 上运行,可以通过 WSL (Windows Subsystem for Linux) 来模拟合适的执行环境。 - **依赖安装** 安装必要的 Python 版本及其库文件,以及其他辅助工具链比如 Docker 或者 Kubernetes 如果计划采用容器化管理方式的话。特别注意的是某些深度学习框架可能会有特定版本约束,请参照官方文档确认最佳组合方案。 #### 二、Chatbox 的本地部署过程 按照如下步骤实现 Chatbox 在个人计算机上的独立运作模式: 1. 下载并解压预编译好的可执行程序包或者通过源码自行构建镜像; 2. 设置 API 密钥等相关认证参数以便访问远程资源服务端口映射等网络通信细节调整; 3. 启动后台守护进程保持长期在线状态监听客户端请求消息传递机制建立完毕即可投入使用。 ```bash docker run --gpus all -p 8000:8000 deepseek/chatbot:vlatest ``` 上述命令展示了利用 Docker 技术快速启动一个基于 GPU 加速的服务实例的方法[^2]。 #### 三、向已部署Chatbox 中加入自定义训练材料 为了让定制版 AI 更加贴合实际应用场景下的业务逻辑特征表达能力提升效果显著,可以遵循以下指导原则来进行个性化资料注入工作流设计实施: 1. 数据收集整理阶段——将目标领域内的专业知识点汇集成结构化的电子档形式存储起来待用; 2. 文本嵌入转换环节——运用专门算法如 nomic-embed-text 将原始素材转化为机器能够理解识别的标准数值表示法矩阵向量空间分布特性描述清楚明了直观易懂便于后期进一步分析挖掘潜在价值所在之处[^3]; ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') sentences = ["This is an example sentence", "Each sentence is converted"] embeddings = model.encode(sentences) print(embeddings.shape) ``` 3. 模型微调优化时期——借助迁移学习策略结合梯度下降寻优法则不断迭代更新权重系数直至达到预期性能指标为止停止整个流程结束返回最终成果物供用户随时查询调用享受高效便捷智能化体验乐趣无穷尽也! --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值