1.自用:Unifying Structure Reasoning and Language Pre-training for Complex Reasoning Tasks-学习知识图谱-个人指南

因为对知识图谱理解不够清晰,导致在学习知识图谱和大模型融合时遇到苦难,文章看不懂。

具体是在理解文章:《Unifying Structure Reasoning and Language Pre-training for Complex Reasoning Tasks》时所用的知识图谱查询技术不了解。因此写了这篇总结,记录学习过程。

1. 论文解读

文章主要提到了关于构建知识图谱的其他两片文章,这两篇文章有相关的解读:

【论文解读 ICLR 2020 | Jure Leskovec组】Query2box: Reasoning over KGs in Vector Space using Box Embedding_query2box论文阅读-CSDN博客

《Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs》论文阅读笔记_知识图谱多跳推理beta e-CSDN博客

但文章涉及的知识点较多,很难理解。

2. 对于知识图谱的初步了解:

知识图谱构建流程步骤详解_知识图谱怎么构建-CSDN博客

知识图谱构建(概念,工具,实例调研)-CSDN博客

知识图谱一 -- 知识图谱架构、DeepDive中文抽取示例-CSDN博客

主要在看以上三篇内容,因为直接看知识点不容易吸收,且学习速度较慢。即使看完知识点,我最大的困惑:知识图谱如何嵌入、构建 还是没有解决。于是搜索到了:

《斯坦福图机器学习CS224W》√ 原文已收录在endnotes

中文版有这篇笔记:斯坦福图机器学习CS224W笔记自用: Reasoning in Knowledge Graphs using Embeddings_transe方法 多跳-CSDN博客

但是对于里面的:

word2vec ;transE 并不了解,这里其实就是好奇原理,毕竟对我这种一根筋来说,不懂原理很难接受这个方法。

最终,希望自己再对这篇笔记有一个清晰的理解:NLP之一文搞懂word2vec、Elmo、Bert演变

3. 知识图谱嵌入解读

回到第一部分的两篇论文

首先在query2box中,我的理解,核心思想就是:将原本实体当作一个点的方式 转化为 将实体集 转化为一个box,从而可以对实体取并集(v)。也就是说,在处理conjunctive query时,可以把EPFO逻辑查询转化为DNF,然后将最近的实体进行返回。

在第二篇文章 BETAE中,可以取到非操作。

同时还找到了这篇笔记,希望进一步学习。知识图谱从入门到应用——知识图谱推理:基于表示学习的知识图谱推理-[嵌入学习]-CSDN博客

4.《Unifying Structure Reasoning and Language Pre-training for Complex Reasoning Tasks》

最后回到对这篇论文的解读上,文章旨在 通过将知识图谱的结构融合到对文本的解读上,将文本语义和推理结构进行融合。

如这张图所示,通过RoBERTa对文本进行处理,再通过几何学习表示法对向量进行进一步推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值