深度学习?---从Pytorch框架开始

本文介绍了深度学习的基本概念,特别是如何通过PyTorch框架进行实践,强调了动态计算图和PyTorch的易用API。同时,文章详细讲解了如何使用Anaconda进行Python环境管理,包括创建虚拟环境、安装PyTorch、以及conda与pip的区别。
摘要由CSDN通过智能技术生成

深度学习?—从Pytorch框架开始

深度学习是一种机器学习方法,其目标是通过构建深层神经网络来学习数据的表示和特征。
深度学习使用多层神经网络,通常包括输入层、隐藏层和输出层。 这些网络可以自动从数据中学习特征 。
深度学习需要大量的数据来训练模型,然后使用梯度下降等优化算法来调整模型参数,以最小化预测误差 。

深度学习框架

深度学习并不太难,只需基础代数+概率+python即可入门。现如今有很多深度学习框架,我们可以直接拿来用。现在流行的深度学习框架有:
•Theano(蒙特利尔大学)/TensorFlow(谷歌)
•Caffe(加州大学伯克利分校)/Caffe 2(Facebook)
•Torch(纽约大学和脸书)/PyTorch(脸书)

认识Pytorch

PyTorch是一个python包,他的主要特点有:

  1. 动态计算图:PyTorch 使用了动态计算图,使得我们可以在运行时定义和修改计算图,使得调试和开发更加直观。
  2. 易于使用的 API:PyTorch 提供了一套简单易用的 API,方便我们创建神经网络、执行前向和反向传播以及训练模型。

认识Anaconda

Anaconda 是一个用于科学计算的 Python 发行版,它包含了 conda、Python 和超过 180 个科学包及其依赖项。Anaconda 的主要功能包括包管理和环境管理。

如果不用Anaconda进行python环境的管理,那么就会有以下局面:本地只有一个python环境,且所有程序的各种包都放入其中,环境混乱。且将这些程序放到另一个电脑运行,又会遇到缺少相关包的情况,需要自己手动一个个下载。

如果使用了Anaconda,对于每个程序的开发都选用不同的环境,而开发好之后又能将该程序需要的环境(第三方包)都独立打包出来。

关于下载包方面,Anaconda自带了很多python库,不用我们自己去额外安装,极少数我们需要安装的时候,我们通过conda install xxx就好了,及其方便!如果不用Anaconda,在导包时我们得用import语句,但他只能导入python自带的库。第三方库需要我们自己通过cmd去执行pip install,非常麻烦。

另外Anaconda还附带捆绑了两个非常好用的交互式代码编辑器(Spyder、Jupyter notebook)。

Anaconda下载与安装

下载地址:https://www.anaconda.com/download/

在 Anaconda的安装过程中,有一步需要提一下:

第一个打钩处是添加环境变量,默认是没有勾选的,请务必勾选上,如果这里不勾选,后续安装完成后想要自行添加环境变量会非常麻烦。勾选完后点击 Install 安装。如果忘了勾选可以卸载重装。

在这里插入图片描述

配置Anaconda源

这一步非常重要!因为Anaconda的下载源默认在国外,如果不配置国内源,下载速度会非常慢。而且很多时候会导致网络错误而下载失败。配置方法如下:

打开Anaconda Prompt,执行以下命令,将清华镜像配置添加到Anaconda中。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 
  
conda config --set show_channel_urls yes

接着便可输入conda info命令查看当前的channel,查看是否配置成功:

conda info

看到以下信息便知配置成功。
在这里插入图片描述

常见的环境管理命令

下载完Anaconda后,在菜单处有Anaconda Prompt 和Anaconda Navigator。Anaconda Prompt 就是我们的cmd,我们可以在其中编辑命令。

1.查看环境

conda info 查看当前环境的信息

conda info -e 查看已经创建的所有虚拟环境

例如:

在这里插入图片描述

  1. base 环境:这是默认的 Conda 环境,通常包含了 Conda 自带的 Python 版本和一些基本的包。
  2. PyTorch 环境:这是我创建的一个名为 PyTorch 的环境。它位于 D:\MyAnaconda\myAnaconda\envs\PyTorch 目录下。

在这些环境中,可以安装不同版本的 Python 和其他软件包,以满足不同项目的需求。

D:\MyAnaconda\myAnaconda\envs\PyTorch 目录下的文件情况如下:

在这里插入图片描述

2.创建虚拟环境

我们创建一个虚拟环境,然后在这个环境中配置各种各样的包,就可以在这个环境中运行目标程序了。

使用如下命令创建环境:

conda create -n 环境名 -y

也可以指定python版本:

conda create -n 环境名 python=x.x.x -y

获取python版本的命令如下:

python --version
3.切换环境

如果想切换到某个环境,可以使用 conda activate 命令,其中 是你想要激活的环境的名称。例如,要切换到 PyTorch 环境,可以运行:

conda activate PyTorch 
4.退出环境

使用以下命令,可以退出当前环境

conda deactivate # windows
source deactivate 环境名 # linux

注意,如果你之前用过conda activate xxx多次进入不同的环境操作之后,然后使用conda deactivate是返回上一层的环境。

5.删除环境/包

使用以下命令,可以删除指定环境(谨慎操作)
conda remove -n 环境名 --all -y
使用以下命令,可以删除当前环境的包
conda remove 包名称
使用以下命令,卸载指定环境中的包
conda remove -n 环境名 包名称

使用conda下载包和使用pip下载包在效果上会有什么不同

1)conda 可以创建和管理独立的 Python 环境,而 pip 仅用于安装包。

2) conda 可以自动解决包之间的依赖关系。这意味着当你安装一个包时,它会自动安装所需的其他包。

3)conda 从 Anaconda 仓库中获取包,这些包经过测试并且与 Anaconda 发行版兼容。pip 从 Python Package Index (PyPI) 中获取包,这些包由社区维护。

如果你需要更好的环境管理和依赖解决,建议使用 conda。如果只是简单地安装包,那么 pip 也足够了

pycharm使用anaconda创建的虚拟环境

1.进入项目设置里的Project Interpreter,然后点击show all

然后点击添加 ,接着选Existing environment ,选择自己在anaconda里创建的虚拟环境,路径在anaconda的安装路径里的envs里 。

在这里插入图片描述

Pytorch的安装和使用

打开Anaconda 提示符(Anaconda Prompt)并运行以下命令来安装 PyTorch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 

验证安装是否成功:

  • 打开 Python 解释器(运行 python 命令)。

  • 输入以下代码:

    import torch
    print(torch.__version__)
    

    如下图打印出了Pytorch的版本,便证明Pytorch安装成功

    在这里插入图片描述

Pytorch的官网如下:
https://pytorch.org

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值