NLP基础

线性变换

  • 从几何上直观看,

变换前是直线的,变换后依然是直线.
直线比例保持不变.
变换前是原点,变换后依然是原点。
如:旋转、推移

  • 代数上实现,

旋转实现:若有 A ⃗ = [ x y ] \vec{A}=\begin{bmatrix} x\\y \end{bmatrix} A =[xy],旋转矩阵
T r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] T_{rotate}=\begin{bmatrix} \cos \theta &-\sin \theta \\ \sin \theta &\cos \theta\end{bmatrix} Trotate=[cosθsinθsinθcosθ],通过矩阵乘法 T r o t a t e A ⃗ = A ’ ⃗ T_{rotate}\vec{A}=\vec{A^{’} } TrotateA =A ,得到旋转 θ \theta θ后的向量 A ’ ⃗ \vec{A^{’} } A ,平面上图形的每个点都如此,就形成旋转后的图形。

仿射变换

指在几何中,一个向量空间进行一次线性变换并接上 一个平移,变换为另一个向量空间。

  • 从几何上直观看,

变换前是直线的,变换后依然是直线。
直线比例保持不变。

如:平移

  • 代数上实现

一般定义为:一个向量 x ⃗ \vec{x} x 平移 b ⃗ \vec{b} b ,与旋转放大缩小A的仿射为 y ⃗ \vec{y} y = A x ⃗ \vec{x} x + b ⃗ \vec{b} b
普通向量代数用矩阵乘法呈现线性映射,用向量加法表示平移。

仿射空间

仿射空间是点和向量的合集。仿射空间是没有起点只有方向与大小的向量所构成的线性空间。
在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。
从基本数学概念上来说,一个坐标系对应了一个仿射空间 (Affine Space),当矢量从一个坐标系变换到另一个坐标系时要进行线性变换 (Linear Transformation)。对点来说, 要进行仿射变换 (Affine Transformation)。这就是我们利用同源坐标的理由。它能在对矢量进行线性变换的同时对点进行仿射变换。坐标变换的基本操作就是将变换矩阵乘以矢量或点。

通过线性变换完成仿射变换

y ⃗ = A x ⃗ + b ⃗ \vec{y}=A\vec{x}+\vec{b} y =Ax +b 可以写作 [ y ⃗ 1 ] = [ A b ⃗ 0 1 ] [ x ⃗ 1 ] \begin{bmatrix} \vec{y} \\1 \end{bmatrix}=\begin{bmatrix} A & \vec{b} \\ 0 & 1 \end{bmatrix}\begin{bmatrix}\vec{x} \\ 1\end{bmatrix} [y 1]=[A0b 1][x 1]
增加一个维度后,就可以在高维度通过线性变换来完成低维度的仿射变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值