基于神经网络预测混凝土强度


 

摘  要

 

混凝土是建筑工程中常用的材料,其强度对于建筑物的安全性和耐久性至关重要。传统的混凝土强度预测方法存在多种缺陷,如制样不规范、数据量不足等问题,导致预测精度低下。基于神经网络的混凝土强度预测技术通过海量数据的模型训练和处理非线性问题,能够避免试验的繁琐和时间成本,提高预测精度。此外,该技术还能实现在线监控和自适应控制,提高生产质量和效率,推动混凝土绿色可持续发展,并拓展混凝土在新领域应用,具有广泛的研究意义和应用价值。

此外,该研究还为推动混凝土绿色可持续发展并拓展混凝土在新领域中的应用提供了支持。通过以上技术手段,该研究达到了提高混凝土强度预测精度、降低试验成本和时间、提高生产质量和效率、推动混凝土可持续发展以及拓展混凝土应用领域等目的,并取得了显著的效果。

1 概述

1.1 研究意义

混凝土作为建筑工程中最常用的材料之一,其强度对于建筑物的安全性和耐久性至关重要。传统的混凝土强度预测方法存在多种缺陷,如制样不规范、数据量不足等问题,导致预测精度低下。因此,在现代建筑领域,如何提高混凝土强度预测精度,避免试验的繁琐和时间成本,成为了一个迫切需要解决的问题。
    近年来,基于神经网络的混凝土强度预测技术引起了广泛的关注。该技术通过海量数据的模型训练和处理非线性问题,能够更加快捷和准确地预测混凝土强度,并且可以随时进行在线监控和自适应控制,以提高生产质量和效率。相比传统的试验法,该技术具有更高的预测精度和更快的计算速度,有效地降低了试验成本和时间,同时也使得混凝土强度预测变得更加智能化和自动化。
    基于神经网络的混凝土强度预测技术具有广泛的研究意义和实际应用价值。首先,它可以被应用于混凝土生产企业中,提高生产效率和质量,同时降低试验成本和时间,从而使得整个生产过程更加智能化和自动化。其次,该技术还可以被应用于混凝土施工现场中,监控混凝土强度变化以及其他参数的变化,以便提前发现问题并进行调整和纠正。最后,基于神经网络预测混凝土强度的研究还有助于推动混凝土绿色可持续发展,并拓展混凝土在新领域中的应用。
    随着全球环境保护意识的不断提高,建筑行业越来越注重绿色环保。基于神经网络的混凝土强度预测技术在节约能源、减少二氧化碳排放以及降低环境污染等方面具有重要作用。采用这种技术可以使混凝土生产更加环保和可持续,从而大幅度降低人力和物力投入,实现环境友好型生产。因此,该技术有助于推动混凝土绿色可持续发展,并且为建筑行业的可持续发展提供了一个新思路。
   总之,基于神经网络预测混凝土强度的研究是一项具有广泛意义和实际应用价值的重要课题。该技术对于混凝土生产企业提高生产效率和质量、混凝土施工现场实时监控等方面都有着积极的作用。同时,它还能够推动混凝土绿色可持续发展,并拓展混凝土在新领域中的应用。未来,我们可以进一步完善该技术,提高预测精度,并将它应用于更多领域,为建筑行业的可持续发展贡献更多力量。

1.2 国内外研究现状

混凝土强度是混凝土结构设计和施工中的重要指标之一,对于确保混凝土结构的安全性和耐久性具有至关重要的作用。因此,对混凝土强度的预测和控制一直是混凝土科学领域研究的热点之一。接下来对国内外混凝土强度预测的研究现状进行概述。
一、国内混凝土强度预测的研究现状
目前,国内混凝土强度预测的研究主要集中在以下几个方面:
1. 利用统计学方法进行预测
统计学方法是目前国内混凝土强度预测的主要方法之一。这种方法的基本思想是根据一定的统计规律,利用已有的混凝土强度数据,建立预测模型,从而预测未来混凝土强度。常用的统计学方法包括多元线性回归模型、人工神经网络模型、支持向量机模型等。例如,有学者利用多元线性回归模型对混凝土强度进行预测,结果表明该方法预测准确率高,能够有效地预测混凝土强度。
2. 利用机器学习方法进行预测
机器学习方法在混凝土强度预测研究中也得到了广泛应用。这种方法基于大量的数据进行训练,通过学习数据中的规律,建立预测模型,从而对未来的混凝土强度进行预测。常用的机器学习方法包括决策树、随机森林、支持向量机、神经网络等。例如,有学者利用随机森林模型对混凝土强度进行了预测,结果表明该方法预测准确率高,能够有效地预测混凝土强度。
3. 利用混凝土材料特性进行预测
混凝土材料的特性对混凝土强度具有很大的影响。因此,一些学者将混凝土材料的特性作为预测因素,建立预测模型,从而预测混凝土强度。例如,有学者将混凝土材料的粘聚力和内摩擦角作为预测因素,建立预测模型,从而预测混凝土强度。
二、国外混凝土强度预测的研究现状
国外混凝土强度预测的研究也非常活跃,主要集中在以下几个方面:
1. 利用机器学习方法进行预测
机器学习方法在国外混凝土强度预测研究中也得到了广泛应用。例如,有学者利用神经网络模型对混凝土强度进行预测,结果表明该方法能够准确地预测混凝土强度。此外,还有学者利用支持向量机、随机森林等机器学习方法进行混凝土强度预测,取得了良好的效果。
2. 利用混凝土材料特性进行预测
国外研究者也将混凝土材料的特性作为预测因素,建立预测模型,从而预测混凝土强度。例如,有学者将混凝土的孔隙度、水灰比、粘聚力等特性作为预测因素,建立预测模型,从而预测混凝土强度。此外,还有学者将混凝土中的氯离子、硫酸盐离子等离子含量作为预测因素,建立预测模型,从而预测混凝土强度。
    总之混凝土强度预测是混凝土科学领域的一个重要研究方向。国内外研究者都在通过不同的方法和手段来提高混凝土强度的预测准确性。在国内,利用统计学方法和机器学习方法进行混凝土强度预测的研究较为常见,同时也有一些学者将混凝土材料的特性作为预测因素进行预测。而在国外,机器学习方法和利用混凝土材料特性进行预测的研究比较多,取得了不错的效果。值得注意的是,不同方法和手段对混凝土强度预测的准确性和适用性各有优劣,需要根据具体情况选择。
   总体来说,混凝土强度预测的研究仍在不断发展和完善,未来的研究方向可能会更加注重混凝土材料的微观性质和机理研究,同时结合大数据和人工智能等技术,建立更加准确、高效的混凝土强度预测模型,为混凝土结构的设计和施工提供更加可靠的依据。

1.3 本文主要工作   

利用机器学习中的神经网络来对混凝土的强度进行预测,接下来将结果以及其原理过程进行分析介绍。

2基于神经网络预测混凝土强度

2.1 数据处理

数据来源:从互联网github中搜集合成为一个csv文件。

数据预处理方法:
1. 读取数据集:使用 pandas 库的 read_csv() 函数读取 CSV 格式的数据集。
2. 数据清洗:使用 dropna() 函数删除数据框中的缺失值所在的行,使用 drop_duplicates() 函数删除数据框中的重复行。
3. 特征选择:使用 iloc() 函数从数据框中选择了前 8 列作为特征(即自变量),将第 9 列作为目标变量(即因变量)。
4. 数据标准化:使用 StandardScaler() 函数对特征数据进行了标准化处理,即对每个特征按照均值为 0,方差为 1 进行缩放。
5. 拆分数据集为训练集和测试集:使用 train_test_split() 函数将数据集拆分为训练集和测试集,其中测试集占比为 20%。
    通过上述数据预处理步骤,可以将原始数据整理成符合神经网络模型要求的格式,提高了模型的准确性和可靠性。

相关代码如下:

lospath = r'C:\Users\Administrator\PycharmProjects\pythonProject2\大作业\data.csv'
# 读取数据集
data = pd.read_csv(lospath)
# 数据清洗
data.dropna(inplace=True)
data.drop_duplicates(inplace=True)
# 特征选择
X = data.iloc[:, 0:8]
y = data.iloc[:, 8]
# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

2.2 网络结构

该项目使用了 TensorFlow 框架实现了一个包含 4 个全连接层的神经网络模型,用于对数据集进行预测和分类。下面对该神经网络模型的结构和实现进行详细说明:
神经网络结构:

输入层:输入层包含 8 个神经元,对应数据集中的 8 个特征。
隐藏层1:第一个隐藏层包含 64 个神经元,使用了 relu 激活函数。
隐藏层2:第二个隐藏层包含 128 个神经元,使用了 relu 激活函数。
隐藏层3:第三个隐藏层包含 32 个神经元,使用了 relu 激活函数。
输出层:输出层包含 1 个神经元,对应数据集中的目标变量,没有使用激活函数。
    在模型编译中,使用了 Adam 优化器、均方误差(mean_squared_error)损失函数和均方误差和平均绝对误差两个指标来评估模型性能。在模型训练中,使用了 1000 个 epoch,每个 batch 的大小为 20,同时将训练集的 20% 作为验证集进行模型验证。

    在数据预处理中,首先使用 pandas 库的 read_csv() 函数读取了数据集,然后使用 dropna() 函数删除了数据框中的缺失值所在的行,使用 drop_duplicates() 函数删除了数据框中的重复行。接着,使用 iloc() 函数从数据框中选择了前 8 列作为特征(即自变量),将第 9 列作为目标变量(即因变量)。然后对特征数据进行标准化处理,即对每个特征按照均值为 0,方差为 1 进行缩放。最后,使用 train_test_split() 函数将数据集拆分为训练集和测试集。
    在模型训练中,使用了 fit() 函数对模型进行训练,指定了 1000 个 epoch,每个 batch 的大小为 20,同时将训练集的 20% 作为验证集进行模型验证。在训练过程中,通过 history 对象保存了模型的训练过程中损失函数的变化情况,使用 matplotlib 库绘制了训练集和验证集的损失函数曲线,以便进行可视化分析和评估模型的性能。
    在模型评估中,使用了 evaluate() 函数计算了模型在测试集上的损失函数、均方误差和平均绝对误差等指标,并将这些指标输出到屏幕上,以便我们对模型的性能进行评估。最后,使用 predict() 函数对测试集进行预测,得到了模型的预测结果 y_pred,并使用 matplotlib 库将目标变量和预测值进行可视化,以便直观地查看模型的预测效果。

相关代码:

# 创建神经网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_dim=X_train.shape[1]),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(1)
])

# 编译模型:
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse', 'mae'])

# 训练模型:
history = model.fit(X_train, y_train, validation_split=0.2, epochs=1000, batch_size=20)

#模型评估:

loss, mse, mae = model.evaluate(X_test, y_test)
print("测试损失:", loss)
print("测试均方误差:", mse)
print("测试平均绝对误差:\n", mae)

2.3 损失函数

在该项目中,损失函数相关功能主要是通过 TensorFlow 的编译模型和训练模型两个步骤实现的。
    首先,在编译模型中,使用了 compile() 函数来编译模型,其中指定了优化器为 Adam,损失函数为均方误差(mean_squared_error),并同时计算了均方误差和平均绝对误差两个指标。这里的损失函数即为均方误差(MSE),是用于评估模型预测结果与实际值之间差异的指标,具体计算公式为:MSE = 1/n * Σ(y_true - y_pred)^2,其中 y_true 是实际值,y_pred 是预测值,n 是样本数量。
    然后,在训练模型中,使用了 fit() 函数对模型进行训练,其中通过指定 epochs、batch_size 和 validation_split 等参数进行模型训练。在训练过程中,模型通过反向传播算法来更新模型参数,以最小化损失函数。在每次迭代结束后,模型会计算训练集和验证集的损失函数值,并将其保存在 history 对象中。这些损失函数值可以用于分析模型的训练效果和优化模型参数。
    最后,在计算测试集损失和指标时,使用了 evaluate() 函数来计算模型在测试集上的损失函数值、均方误差和平均绝对误差等指标。其中,损失函数值即为均方误差,均方误差和平均绝对误差等指标可以用于评估模型的性能和预测效果。最后使用绘图函数plt.plot得到的损失曲线如图所示:

b28c9cf3f0f946e9b4c4b63804ca2a12.png

2.4 实验结果及分析

在训练过程中,可以看到模型经过了 1000 个 epoch 的训练,在训练集和验证集上的损失函数值分别在不断下降,但是在一定程度上存在过拟合的问题,可以通过增加正则化项等方式进行解决。
在测试过程中,模型在测试集上的损失函数值为 26.44,均方误差为 26.44,平均绝对误差为 3.54。这些指标表明模型的预测效果较好,与实际值之间的误差较小,但仍然存在一定的误差。
最后,通过将模型的预测结果和真实标签进行可视化,可以看到模型的预测结果与真实标签之间存在一定的偏差,但整体上预测结果与真实标签之间的趋势基本一致。
总的来说,该模型的表现还算不错,但仍然可以通过调整模型结构、优化参数等方式进一步提高预测效果。

数据输出结果图如图所示:

4baa73ccc54f4878b8ca90e79eaedef8.png

预测结果与实际值对比图:

fb834b179eef451e923b0f3efd99f12f.png

如图所示整体曲线拟合较好,可判断出模型训练较为成功

 

3.总结

3.1 卷积神经网络优缺点

优势:
1. 神经网络模型具有很强的非线性拟合能力,可以学习到数据中的复杂模式和规律,从而提高预测的准确性和泛化能力。
2. 通过使用 TensorFlow 等深度学习框架,可以大大简化神经网络模型的构建和训练过程,减少了手动调参的工作量。
3. 可以通过增加神经网络的层数、节点数等方式来提高模型的表现,同时也可以通过正则化等方式来防止过拟合等问题。
缺点:
1. 神经网络模型的训练过程较为耗时,需要大量的计算资源和时间,特别是在处理大规模数据时,训练时间可能会非常长。
2. 神经网络模型的解释性较差,很难解释模型如何做出预测和推理,导致模型的可解释性较差,不利于模型应用的可信度和可靠性。
3. 神经网络模型的参数较多,需要进行较为复杂的调参,包括层数、节点数、激活函数、优化器等等,不易掌握和调整。
4. 神经网络模型容易出现过拟合的问题,需要进行正则化等方式来避免过拟合。
综上所述,神经网络模型具有很强的非线性拟合能力,可以很好地解决复杂的回归问题,但也存在一些缺点,如训练时间较长、解释性较差、参数调整困难等问题。因此,在使用神经网络模型解决问题时,需要根据具体情况进行权衡和选择,选择合适的模型结构、优化器和正则化等方式,以达到最佳的预测效果和泛化能力。

3.2 总结与展望

随着人工智能和深度学习技术的不断发展,神经网络在回归问题领域的应用也会不断拓展和深化。未来回归问题领域的发展方向可能包括以下几个方面:
1. 多任务回归:将多个相关的回归任务结合起来进行联合学习,可以提高模型的泛化能力和效率,适用于多个相关任务共同出现的场景。
2. 强化学习回归:将强化学习技术应用于回归问题中,可以通过优化奖励函数来实现更加精准和灵活的回归预测。
3. 增强模型的可解释性:由于神经网络模型的黑盒性,导致模型的可解释性较差,不利于模型的应用和推广。未来的发展方向可能会集中在增强模型的可解释性,提高模型的可信度和可靠性。
4. 结合其他技术:未来回归问题领域的发展也可能会结合其他技术,如自然语言处理、图像处理等技术,来处理更加复杂和多样化的回归问题。
5. 端到端回归模型:通过端到端的方式来进行回归预测,可以提高模型的效率和准确性,同时也可以减少数据处理和特征提取的工作量。
6. 基于无监督学习的回归:通过无监督学习技术,可以利用大量的无标签数据来进行回归预测,从而提高模型的泛化能力和效率。
7. 增强模型的可迁移性:将模型的训练和预测过程与具体的数据集和任务解耦,可以实现模型的可迁移性,从而可以在不同的数据集和任务中进行预测和应用。
综上所述,未来回归问题领域的发展方向可能涉及到多个方面,包括多任务回归、强化学习回归、增强模型的可解释性、结合其他技术、端到端回归模型、基于无监督学习的回归和增强模型的可迁移性等。这些方向都具有重要的研究价值和应用前景,可以进一步推动回归问题领域的发展和应用。未来,随着数据量的不断增加和技术的不断进步,回归问题也将变得更加复杂和多样化,需要不断探索和创新,以提高模型的效率和准确性,为实际应用提供更加精准和可靠的预测和决策支持。

参 考 文 献

[1] 张伟洲, 王维华, 赵印: 基于支持向量机的混凝土强度预测模型及应用[J]. 公路交通科技, 2018(01):61-66.

[2]刘倩、胡明星、陈穗求。BP神经网络在混凝土强度预测中的应用[J]。同济大学学报(自然科学版),2007,35(11):1518-1521。

[3]熊光生、柳永斌、叶林根。混凝土抗压强度神经网络预测试验研究[J]。建筑科学与工程学报,2005,22(3):58-62。

[4]李维忠, 翁海洋, 郭建华: 基于多元线性回归分析的混凝土抗压强度预测研究[J]. 深圳大学学报理工版, 2019, 36(06): 583-589.

[5]赵娟, 罗春生, 邢吉林: 基于模糊聚类分析法的混凝土28天龄期强度预测[J]. 华南理工大学学报(自然科学版),2020,48(10):76-82.

[6]Mukherjee, A., Bandyopadhyay, S., Bera, S.: Prediction of compressive strength of concrete using artificial neural network and fuzzy logic models[J]. Construction and Building Materials, 2017, 142: 157-164.

[7]De La Varga, I., Martin-Perez, B., Climent, M.A., et al.: Assessment of the ultrasonic pulse velocity method for the non-destructive testing of concrete strength in a long-term study[J]. Construction and Building Materials, 2018, 162: 222-232.

[8]Masi, A., di Prisco, M., Lignola, G.P., et al.: A new micro-mechanical model for the prediction of concrete fracture behavior under different stress levels[J]. Engineering Fracture Mechanics, 2017, 188: 17-38.

[9]Li, C., Zhang, D., Wang, J., et al.: Prediction of concrete compressive strength using convolutional neural network[J]. Advances in Civil Engineering, 2021, Article ID 8869578.

[10]Sattar, A. M., & Al-Jumaili, H. A. (2016). Predicting the compressive strength of concrete using multiple regression model with a new approach for choosing the best combination of input variables. Construction and Building Materials, 111, 493-501.

[11]Singh, T. N., & Gupta, A. K. (2018). Prediction of compressive strength of fibre reinforced concrete using machine learning techniques. Construction and Building Materials, 189, 94-106

[12]Zhang, Y., Wang, M., Li, Y., et al. (2019). Prediction of Concrete Compressive Strength Based on an Improved Extreme Learning Machine Algorithm. Applied Sciences, 9(17), 3628.

[13]Yan, X., Lin, G., Song, J., et al. (2020). Prediction of concrete strength under different curing conditions using machine learning methods. Advances in Mechanical Engineering, 12(7), 1687814020942872.
[14]Hou, M., Sun, W., & Zhao, X. (2021). Nondestructive Evaluation of Concrete Compressive Strength Using Convolutional Neural Network-Based Image Analysis. Mathematical Problems in Engineering, 2021, Article ID 8857277.

[15]Wang, L., Li, Y., Lv, Z., et al. (2020). Prediction of compressive strength of recycled aggregate concrete using artificial neural network optimized by fruit fly optimization algorithm. Construction and Building Materials, 230, 117131.
[16]Jiang, W., Liu, X., Zhang, L., et al. (2021). Prediction of concrete compressive strength with hybrid kernel support vector regression based on grey wolf optimization algorithm. Neural Computing and Applications, 33, 10087–10100.

全部源码:

数据集链接:

data.csv官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘123云盘为您提供data.csv最新版正式版官方版绿色版下载,data.csv安卓版手机版apk免费下载安装到手机,支持电脑端一键快捷安装https://www.123pan.com/s/IwAGjv-O1VVv.html%E6%8F%90%E5%8F%96%E7%A0%81:2023

import tensorflow as tf
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
lospath = r'data.csv'
# 读取数据集
data = pd.read_csv(lospath)
# 数据清洗
data.dropna(inplace=True)# 删除了数据框中的缺失值所在的行
data.drop_duplicates(inplace=True)# 删除了数据框中的重复行
# 特征选择
X = data.iloc[:, 0:8]  # 使用 iloc() 函数从数据框中选择了前 8 列作为特征(即自变量)
y = data.iloc[:, 8]    # 并将第 9 列作为目标变量(即因变量)
# 数据标准化
scaler = StandardScaler()#StandardScaler() 函数对特征数据进行了标准化处理
X = scaler.fit_transform(X)
# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)#train_test_split() 函数将数据集拆分为训练集和测试集测试集占比为 20%。
# 创建神经网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_dim=X_train.shape[1]),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(1)
])
#4 个全连接层,分别包含 64、128、32 和 1 个神经元。其中,前 3 层使用了 relu 激活函数,最后一层没有使用激活函数
# 编译模型:使用 compile() 函数对模型进行编译,指定了优化器为 Adam,损失函数为均方误差(mean_squared_error),并同时计算了均方误差和平均绝对误差两个指标
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse', 'mae'])
# 训练模型:用 fit() 函数对模型进行训练,指定了 1000 个 epoch和每个 batch 的大小为 20,以及将训练集的 20% 作为验证集进行模型验证
history = model.fit(X_train, y_train, validation_split=0.2, epochs=1000, batch_size=20)
# 绘制损失函数曲线:history 对象保存了模型的训练过程中损失函数的变化情况,使用 matplotlib 库绘制了训练集和验证集的损失函数曲线
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper right')
plt.show()
# 计算测试集损失和指标:使用 evaluate() 函数计算了模型在测试集上的损失函数、均方误差和平均绝对误差等指标,并将这些指标输出到屏幕上,以便我们对模型的性能进行评估。
loss, mse, mae = model.evaluate(X_test, y_test)
print("测试损失:", loss)
print("测试均方误差:", mse)
print("测试平均绝对误差:\n", mae)
# 进行预测:predict() 函数对测试集进行预测,得到了模型的预测结果 y_pred。
y_pred = model.predict(X_test)
import matplotlib.pyplot as plt
# 将预测值和目标数据对比可视化,然后,使用 matplotlib 库将目标变量和预测值进行可视化
plt.plot(y_test.values)
plt.plot(y_pred)
plt.title('Comparison of Target and Prediction')
plt.ylabel('Value')
plt.xlabel('Index')
plt.legend(['Target', 'Prediction'], loc='upper right')
plt.show()

 

  • 15
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马程序员24

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值