Ollama系列05:Ollama API 使用指南

Ollama系列05:Ollama API 使用指南

本文是Ollama系列教程的第5篇,在前面的4篇内容中,给大家分享了如何再本地通过Ollama运行DeepSeek等大模型,演示了chatbox、CherryStudio等UI界面中集成Ollama的服务,并介绍了如何通过cherryStudio构建私有知识库。

在今天的分享中,我将分享如何通过API来调用ollama服务,通过整合ollama API,将AI能力集成到你的私有应用中,提升你的职场价值!

Ollama API

Ollama 提供了一套简单好用的接口,让开发者能通过API轻松使用大语言模型。

本篇内容将使用Postman作为请求工具,和开发语言无关。

基本概念

在开始之前,我们先了解几个基本的概念:

Model:模型,我们调用接口时使用的模型名字。我们可以把Ollama理解为模型商店,它里面运行着很多模型,每个模型都有一个唯一的名字,例如deepseek-r1:1.5b

Prompt: 提示词,是我们给模型的指令。比如天空为什么是蓝色的就是一条简单的提示词。

Token:字符块,是大模型的最小输出单位,同时也是大模型的计费单位。举个例子,对于天空为什么是蓝色的这句话,大模型会进行拆分天空/为什么/是/蓝色/的,每一段就是一个token(实际情况会比这个例子复杂)

内容生成(/api/generate)

让大模型帮我们生成指定的内容,就可以使用内容生成接口。一问一答,不带上下文。

我们试着用最少的参数来调用:

{

  "model": "deepseek-r1:1.5b",

  "prompt": "天空为什么是蓝色的"

}

在postman里面看看输出:

可以看到输出的内容很长,这是因为默认采用的是stream的方式输出的,也就是我们在deepseek app里面看到的一个字一个字输出的那种效果。我们可以将stream参数设置成false来禁用流式输出。

{

    "model": "deepseek-r1:1.5b",

    "prompt": "天空为什么是蓝色的",

    "stream": false

}

参数列表

参数名 是否必填 描述

model 是 模型名称

prompt 是 需要生成响应的提示词

suffix 否 模型响应后追加的文本

images 否 Base64编码的图片列表(适用于多模态模型如llava)

format 否 返回响应的格式(可选值:json 或符合 JSON Schema 的结构)

options 否 模型额外参数(对应 Modelfile 文档中的配置如 temperature)

system 否 自定义系统消息(覆盖 Modelfile 中的定义)

template 否 使用的提示词模板(覆盖 Modelfile 中的定义)

stream 否 设为 false 时返回单个响应对象而非流式对象

raw 否 设为 true 时不格式化提示词(适用于已指定完整模板的情况)

keep_alive 否 控制模型在内存中的保持时长(默认:5m)

context 否 (已弃用)来自前次 /generate 请求的上下文参数,用于维持短期对话记忆

生成对话(/api/chat)

生成对话,是一种具备上下文记忆的内容生成。在内容生成API中,我们仅传入了prompt,大模型仅对我们本地的prompt进行回答,而在生成对话API中,我们还可以传入messages参数,包含我们多轮对话内容,使大模型具备记忆功能。

最简单的调用(为了方便演示,我们将stream参数设置为false):

{

    "model": "deepseek-r1:1.5b",

    "messages": [

        {

            "role": "user",

            "content": "天空通常是什么颜色"

        }

    ],

    "stream": false

}

postman调用截图:

多轮对话

聊天的时候,ollama通过messages参数保持上下文记忆。当模型给我们回复内容之后,如果我们要继续追问,则可以使用以下方法(注意:deepseek-r1模型需要在上下文中移除think中的内容):

{

    "model": "deepseek-r1:1.5b",

    "messages": [

        {

            "role": "user",

            "content": "天空通常是什么颜色"

        },

        {

            "role": "assistant",

            "content": "天空通常看起来是**柔和的、明快的或稍微有些昏黄的色调**。具体颜色可能会因不同的天气情况而有所变化,例如:\n\n1. **晴朗天气**:天空可能呈现出温暖、明亮的颜色,比如蓝天、碧空等。\n2. **下雨天**:云层覆盖天空,可能导致颜色较为阴郁或变黑。\n3. **雨后天气**:雨后的天空可能恢复为明亮的色调。\n\n总的来说,天空的颜色主要取决于大气中的光线反射和折射情况,以及太阳的位置。"

        },

        {

            "role": "user",

            "content": "为什么是蓝色的?"

        }

    ],

    "stream": false

}

postman调用截图:

结构化数据提取

当我们和系统对接时,通常要需要从用户的自然语言中提到结构化数据,用来调用现有的外部系统的接口。在ollama中我们只需要指定format参数,就可以实现结构化数据的提取:

{

    "model": "deepseek-r1:1.5b",

    "messages": [

        {

            "role": "user",

            "content": "哈喽,大家好呀~ 我是拓荒者IT,今年36岁了,是一名软件工程师"

        }

    ],

    "format": {

        "type": "object",

        "properties": {

            "name": {

                "type": "string"

            },

            "age": {

                "type": "integer"

            },

            "job": {

                "type": "string"

            }

        },

        "required": [

            "name",

            "age",

            "job"

        ]

    },

    "stream": false

}

参数列表

参数名 是否必填 描述

model 是 模型名称

messages 是 聊天消息数组(用于维持对话记忆)

messages.role 是 消息角色(可选值:system, user, assistant, tool)

messages.content 是 消息内容

messages.images 否 消息中Base64编码的图片列表(适用于多模态模型如llava)

messages.tool_calls 否 模型希望调用的工具列表(JSON格式)

tools 否 模型可使用的工具列表(JSON格式,需模型支持)

format 否 返回响应的格式(可选值:json 或符合 JSON Schema 的结构)

options 否 模型额外参数(对应 Modelfile 文档中的配置如 temperature)

stream 否 设为 false 时返回单个响应对象而非流式对象

keep_alive 否 控制模型在内存中的保持时长(默认:5m)

生成嵌入数据(/api/embed)

嵌入数据的作用是将输入内容转换成向量,可以用于向量检索等场景。比如我们在第四篇中介绍的知识库,就需要用到embedding模型。

在调用embed接口时,我们要选择支持Embedding功能的模型,deepseek是不支持的。

调用示例:

{

  "model": "bge-m3",

  "input": "为什么天空是蓝色的呢?"

}

postman调用截图:

兼容openAI接口

因为现在很多应用、类库都是基于OpenAI构建的,为了让这些系统能够使用Ollama提供的模型,Ollama提供了一套兼容OpenAI的接口(官方说是实验性的,以后可能会有重大调整)。

因为这种兼容,使得我们可以直接通过OpenAI的python库、node库来访问ollama的服务,确实方便了不少。

注意:ollama属于第三方接口,不能100%支持OpenAI的接口能力,因此在使用的时候需要先了解清楚兼容的情况。

其它接口

ollama还有一些其它的接口,用来实现对模型的管理等功能,而这些功能我们通常会在命令行完成,因此不做详细说明。这些API的列表如下:

模型创建(/api/create)

列出本地模型(/api/tags)

查看模型信息(/api/show)

复制模型(/api/copy)

删除模型(/api/delete)

拉取模型(/api/pull)

推送(上传)模型(/api/push)

列出运行中的模型(/api/ps)

<think>好的,用户现在想了解如何使用Ollama API,特别是示例教程。首先,我需要回顾之前提供的卸载和加载模型的回答,确保这次回答在引用和结构上保持一致。用户提到的引用有四个,需要结合这些资料来组织内容,但要注意用户之前的问题可能更关注API的具体使用步骤。 首先,用户可能希望得到清晰的步骤,分点说明如何调用API。根据引用[3],Ollama的REST API有生成响应和聊天的端点,所以需要详细说明这两个部分。可能需要包括curl命令和代码示例,比如Python,因为用户之前的问题中有Python的代码示例。 接下来,用户可能需要知道如何管理模型,比如列出模型或删除模型,这部分可以结合引用[3]中的API方法,比如/api/tags来获取模型列表,以及/api/delete来终止会话。但根据之前回答,删除模型可能需要其他方法,比如ollama rm,所以需要确认API是否支持直接模型管理。 还要考虑用户可能遇到的问题,比如如何保持会话、处理流式响应,或者错误处理。引用[4]提到OllamaSharp的配置,可能需要提到如何设置API的基本URL和密钥,但根据引用[3]的示例,本地可能不需要API key,所以需要区分本地和远程API的情况。 用户可能还需要知道如何通过客户端库(如Python的requests库)来调用API,而不仅仅是curl命令。之前的回答中提到了Python客户端,所以需要给出Python的示例代码,并确保语法正确。 另外,用户可能想知道如何启动服务,确保Ollama服务正在运行,因为这是API调用的前提。可能需要简要提到启动服务的命令,比如ollama serve。 需要检查之前的回答中提到的REST API部分,确保没有遗漏重要功能,比如模型列表、生成响应、聊天对话等。同时,注意引用正确的来源,比如引用[3]提供的API示例,以及引用[1]中的教程内容。 最后,生成相关问题时要围绕API的使用,比如如何流式获取响应、处理错误、使用其他编程语言调用等。确保问题有针对性,帮助用户深入理解。</think>以下是根据Ollama官方文档及实践总结的API使用指南,包含5种核心应用场景及示例: ### 一、基础环境配置 1. 启动Ollama服务 ```bash ollama serve # 默认监听11434端口 ``` 2. 验证服务状态 ```bash curl http://localhost:11434 # 返回"Ollama is running"即正常[^3] ``` ### 二、文本生成API(同步) ```python import requests response = requests.post( "http://localhost:11434/api/generate", json={ "model": "llama3", "prompt": "量子计算机与传统计算机的根本区别是什么?", "stream": False, "options": {"temperature": 0.7} } ) print(response.json()["response"]) # 输出生成内容[^3] ``` ### 三、对话式API(支持多轮对话) ```python conversation_history = [] def chat_with_ai(message): global conversation_history conversation_history.append({"role": "user", "content": message}) response = requests.post( "http://localhost:11434/api/chat", json={ "model": "llama3", "messages": conversation_history, "stream": False } ) ai_response = response.json()["message"]["content"] conversation_history.append({"role": "assistant", "content": ai_response}) return ai_response print(chat_with_ai("如何学习深度神经网络?")) # 首次提问 print(chat_with_ai("请用PyTorch写个示例")) # 延续对话[^3] ``` ### 四、流式响应处理 ```python response = requests.post( "http://localhost:11434/api/generate", json={ "model": "llama3", "prompt": "解释Transformer架构", "stream": True }, stream=True ) for line in response.iter_lines(): if line: decoded_line = json.loads(line.decode('utf-8')) print(decoded_line.get("response", ""), end="", flush=True) ``` 流式传输可实时显示生成内容,适用于长文本生成场景[^3] ### 五、高级参数配置 ```python advanced_params = { "model": "llama3:70b", "prompt": "编写Python快速排序算法", "options": { "num_predict": 512, # 最大生成token数 "temperature": 0.8, # 随机性控制(0-1) "top_p": 0.9, # 核心采样概率 "repeat_penalty": 1.2 # 重复惩罚系数 }, "system": "你是一个资深Python工程师", # 系统提示词 "template": "{{ .Prompt }}", # 自定义模板 "context": [...] # 历史上下文数组 } ``` ### 六、模型管理API 1. 查看可用模型 ```bash curl http://localhost:11434/api/tags ``` 2. 删除本地模型 ```python requests.delete("http://localhost:11434/api/delete", json={"name": "llama3"}) ``` 3. 查看模型信息 ```bash curl http://localhost:11434/api/show -d '{"name": "llama3"}' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马程序员2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值