前言
各种数字滤波原理,离散化公式及代码。
1. 数字低通滤波
滤波器公式
一阶低通滤波器的输出
y
[
n
]
y[n]
y[n] 可以通过以下公式计算得到:
y
[
n
]
=
α
x
[
n
]
+
(
1
−
α
)
y
[
n
−
1
]
y[n] = \alpha x[n] + (1 - \alpha) y[n-1]
y[n]=αx[n]+(1−α)y[n−1]
其中:
x
[
n
]
x[n]
x[n]是当前时刻的输入值。
y
[
n
]
y[n]
y[n]是当前时刻的输出值。
y
[
n
−
1
]
y[n-1]
y[n−1]是上一时刻的输出值。
α
\alpha
α是滤波因子,决定了滤波器的响应速度。
α
\alpha
α的取值范围在 (0,1) 之间。
α
=
T
s
T
s
+
1
2
π
f
c
\alpha = \frac{T_s}{T_s+\frac{1}{2\pi f_c}}
α=Ts+2πfc1Ts
其中,
f
c
f_c
fc是设计的截止频率。
具体推导参考以下文章:
https://zhuanlan.zhihu.com/p/42935576
https://blog.csdn.net/weixin_42887190/article/details/125749509