实变函数论——域——题解

题目

Suppose C \mathcal{C} C is a non-empty class of subsets of Ω \Omega Ω. Let A ( C ) \mathcal{A}(\mathcal{C}) A(C) be the minimal field over C \mathcal{C} C. Show that A ( C ) \mathcal{A}(\mathcal{C}) A(C) consists of sets of the form
∪ i = 1 m ∩ j = 1 n i A i j , \cup_{i=1}^{m}\cap_{j=1}^{n_i}A_{ij}, i=1mj=1niAij,
where for each i , j i, j i,j either A i j ∈ C A_{ij}\in \mathcal{C} AijC or A i j c ∈ C A_{ij}^c\in \mathcal{C} AijcC and where the m m m sets ∩ j = 1 n i A i j , 1 ≤ i ≤ m , \cap_{j=1}^{n_i}A_{ij },1\leq i\leq m, j=1niAij,1im, are disjoint. Thus, we can explicitly represent the sets in A ( C ) \mathcal{A}(\mathcal{C}) A(C) even though this is impossible for the σ \sigma σ-field over C \mathcal{C} C.

思路

Λ : = { ∑ i = 1 m ⋂ j = 1 n i A i j : A i j ∈ C or A i j c ∈ C } \Lambda:=\left\{\sum_{i=1}^m\bigcap_{j=1}^{n_i}A_{ij}:A_{ij}\in \mathcal{C} \quad \text{or} \quad A_{ij}^c\in\mathcal{C}\right\} Λ:={i=1mj=1niAij:AijCorAijcC}
其中 ∑ \sum 表示互不相交的集合的并集。

1. 先证明 Λ \Lambda Λ是域
2. 接着证明 C ⊂ Λ \mathcal{C}\subset \Lambda CΛ
3. 最后证明 A ( C ) = Λ \mathcal{A}(\mathcal{C})=\Lambda A(C)=Λ.

解析

Λ : = { ∑ i = 1 m ⋂ j = 1 n i A i j : A i j ∈ C or A i j c ∈ C } \Lambda:=\left\{\sum_{i=1}^m\bigcap_{j=1}^{n_i}A_{ij}:A_{ij}\in \mathcal{C} \quad \text{or} \quad A_{ij}^c\in\mathcal{C}\right\} Λ:={i=1mj=1niAij:AijCorAijcC}
其中 ∑ \sum 表示互不相交的集合的并集。

证明 Λ \Lambda Λ是域。

  1. 首先证 Ω ∈ Λ \Omega \in \Lambda ΩΛ
    A ∈ C A\in \mathcal{C} AC,那么 A = ( A c ) c ∈ C A=(A^c)^c\in \mathcal{C} A=(Ac)cC,也就是说 A c A^c Ac的补集在 C \mathcal{C} C中,所以 Ω = A + A c ∈ Λ \Omega=A+A^c\in\Lambda Ω=A+AcΛ
  2. 接下来证对有限交封闭,即若 A ∈ Λ , B ∈ Λ A\in\Lambda,B\in\Lambda AΛ,BΛ,,那么 A ∩ B ∈ Λ A\cap B\in \Lambda ABΛ
    A = ∑ i ∈ I ⋂ j ∈ J A i j A=\sum_{i\in I}\bigcap_{j\in J}A_{ij} A=iIjJAij B = ∑ k ∈ I ′ ⋂ l ∈ J k ′ A k l ′ B=\sum_{k\in I^{\prime}}\bigcap_{l\in J_k^{\prime}}A_{kl}^{\prime} B=kIlJkAkl,那么 A ∩ B = ∑ ( i , k ) ∈ I × I ′ ( ∩ j ∈ J A i j ∩ ∩ l ∈ J k ′ A k l ′ ) , A\cap B=\sum_{(i,k)\in I\times I^{\prime}}(\cap_{j\in J}A_{ij}\cap\cap_{l\in J_k^{\prime}}A_{kl}^{\prime}), AB=(i,k)I×I(jJAijlJkAkl),所以 A ∩ B ∈ Λ A\cap B\in \Lambda ABΛ.
  3. 最后证对补集封闭,即若 A ∈ Λ , A\in \Lambda, AΛ,那么 A c ∈ Λ A^c\in \Lambda AcΛ
    A = ∑ i = 1 m ⋂ j = 1 n i A i j A=\sum_{i=1}^m\bigcap_{j=1}^{n_i}A_{ij} A=i=1mj=1niAij,那么 A c = ( ∑ i = 1 m ⋂ j = 1 n i A i j ) c = ⋂ i = 1 m ⋃ j = 1 n i A i j c . A^c=(\sum_{i=1}^m\bigcap_{j=1}^{n_i}A_{ij})^c=\bigcap_{i=1}^m\bigcup_{j=1}^{n_i}A_{ij}^c. Ac=(i=1mj=1niAij)c=i=1mj=1niAijc.
    根据 Λ \Lambda Λ对有限交封闭,所以若 ⋃ j = 1 n i A i j c ∈ Λ , A i j ∈ C 或者 A i j c ∈ C \bigcup_{j=1}^{n_i}A_{ij}^c\in \Lambda,A_{ij}\in \mathcal{C} 或者 A_{ij}^c\in\mathcal{C} j=1niAijcΛAijC或者AijcC,那么就可以得到 A c ∈ Λ A^c\in \Lambda AcΛ。对于 ⋃ i = 1 n A i c \bigcup_{i=1}^{n}A_{i}^c i=1nAic,我们可以有
    ⋃ i = 1 n A i c = A 1 c + A 2 c A 1 + A 3 c A 2 A 1 + ⋯ + A n c A n − 1 … A 2 A 1 , \bigcup_{i=1}^{n}A_{i}^c=A_1^c+A_2^cA_1+A_3^cA_2A_1+\cdots+A_n^cA_{n-1}\ldots A_2A_1, i=1nAic=A1c+A2cA1+A3cA2A1++AncAn1A2A1,
    显然,上述等式右边的各项互不相交,所以 ⋃ i = 1 n A i c = ∑ j = 1 n B j ,其中 B j = A j c A j − 1 … A 2 A 1 , \bigcup_{i=1}^{n}A_{i}^c=\sum_{j=1}^{n}B_{j},其中B_j=A_j^cA_{j-1}\ldots A_2A_1, i=1nAic=j=1nBj,其中Bj=AjcAj1A2A1, ⋃ j = 1 n i A i j c \bigcup_{j=1}^{n_i}A_{ij}^c j=1niAijc可以表示为 ⋃ j = 1 n i A i j c = ∑ j = 1 n i B i j , 其中 B i j = A i j c … A i 2 A i 1 , \bigcup_{j=1}^{n_i}A_{ij}^c=\sum_{j=1}^{n_i}B_{ij},其中B_{ij}=A_{ij}^c\ldots A_{i2}A_{i1}, j=1niAijc=j=1niBij,其中Bij=AijcAi2Ai1,
    对 s ≠ t ,有 B i s ∩ B i t = ϕ 对s\neq t,有B_{is}\cap B_{it}=\phi s=t,有BisBit=ϕ。又因为 A i j ∈ C 或者 A i j c ∈ C A_{ij}\in \mathcal{C} 或者 A_{ij}^c\in\mathcal{C} AijC或者AijcC,根据集合 Λ \Lambda Λ的定义,所以 ⋃ j = 1 n i A i j c ∈ Λ \bigcup_{j=1}^{n_i}A_{ij}^c\in \Lambda j=1niAijcΛ,从而 A c ∈ Λ A^c\in \Lambda AcΛ.

综上所述, Λ \Lambda Λ是域。

证明 C ⊂ Λ \mathcal{C}\subset \Lambda CΛ

对任意集合 A ∈ C A\in \mathcal{C} AC,可得 A ∈ Λ A\in\Lambda AΛ因此有 C ⊂ Λ \mathcal{C}\subset \Lambda CΛ

证明 A ( C ) = Λ \mathcal{A}(\mathcal{C})=\Lambda A(C)=Λ

因为 A ( C ) \mathcal{A}(\mathcal{C}) A(C) C \mathcal{C} C上的最小域,所以 A ( C ) ⊂ Λ \mathcal{A}(\mathcal{C})\subset\Lambda A(C)Λ

∵ A i j ∈ C 或者 A i j c ∈ C \because A_{ij}\in\mathcal{C}或者A_{ij}^c\in\mathcal{C} AijC或者AijcC
∴ A i j ∈ A ( C ) \therefore A_{ij}\in\mathcal{A}(\mathcal{C}) AijA(C)
∴ ⋂ j = 1 n i A i j ∈ A ( C ) \therefore \bigcap_{j=1}^{n_i} A_{ij}\in\mathcal{A}(\mathcal{C}) j=1niAijA(C)
∴ ∑ i = 1 n ⋂ j = 1 n i A i j ∈ A ( C ) \therefore \sum_{i=1}^{n}\bigcap_{j=1}^{n_i} A_{ij}\in\mathcal{A}(\mathcal{C}) i=1nj=1niAijA(C)
∴ Λ ⊂ A ( C ) \therefore \Lambda\subset\mathcal{A}(\mathcal{C}) ΛA(C)
所以有 A ( C ) = Λ \mathcal{A}(\mathcal{C})=\Lambda A(C)=Λ

重要公式

⋃ i = 1 n A i c = A 1 c + A 2 c A 1 + A 3 c A 2 A 1 + ⋯ + A n c A n − 1 … A 2 A 1 , \bigcup_{i=1}^{n}A_{i}^c=A_1^c+A_2^cA_1+A_3^cA_2A_1+\cdots+A_n^cA_{n-1}\ldots A_2A_1, i=1nAic=A1c+A2cA1+A3cA2A1++AncAn1A2A1,

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值