【DAY8-代码】Pytorch缝合模块之Resnet和SE注意力模块,以及修改模型后如何加载预训练权重

准备代码

首先把这篇文章的代码copy下来。【DL系列】ResNet网络结构详解、完整代码实现
在这里插入图片描述
也可以直接看resnet源码(复杂一点)。resnet源码

再看SE注意力模块代码注意力机制(一)SE模块(Squeeze-and-Excitation Networks)论文总结和代码实现

把SE模块复制到resnet的model文件中,塞到某个子模块下面就行。注意,basicblock和bottleneck都是resnet网络的子模块,ResNet才是主网络。
在这里插入图片描述

#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):
    def __init__(self, inchannel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值