【DAY8-代码】Pytorch缝合模块之Resnet和SE注意力模块,以及修改模型后如何加载预训练权重

准备代码

首先把这篇文章的代码copy下来。【DL系列】ResNet网络结构详解、完整代码实现
在这里插入图片描述
也可以直接看resnet源码(复杂一点)。resnet源码

再看SE注意力模块代码注意力机制(一)SE模块(Squeeze-and-Excitation Networks)论文总结和代码实现

把SE模块复制到resnet的model文件中,塞到某个子模块下面就行。注意,basicblock和bottleneck都是resnet网络的子模块,ResNet才是主网络。
在这里插入图片描述

#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):
    def __init__(self, inchannel, ratio=16):
        super(SE_Block, self).__init__()
        # 全局平均池化(Fsq操作)
        self.gap = nn.AdaptiveAvgPool2d((1, 1))
        # 两个全连接层(Fex操作)
        self.fc = nn.Sequential(
            nn.Linear(inchannel, inchannel // ratio, bias=False),  # 从 c -> c/r
            nn.ReLU(),
            nn.Linear(inchannel // ratio, inchannel, bias=False),  # 从 c/r -> c
            nn.Sigmoid()
        )
 
    def forward(self, x):
            # 读取批数据图片数量及通道数
            b, c, h, w = x.size()
            # Fsq操作:经池化后输出b*c的矩阵
            y = self.gap(x).view(b, c)
            # Fex操作:经全连接层输出(b,c,1,1)矩阵
            y = self.fc(y).view(b, c, 1, 1)
            # Fscale操作:将得到的权重乘以原来的特征图x
            return x * y.expand_as(x)

看看SE模块的输入和输出形状,这里我设置的输入通道是2,模块的输出也是2。
在这里插入图片描述

开始缝合

缝合模块只需要看模块的输入输出通道维数是否与缝合部位的维数匹配。因此我们先随便缝在一个地方,看看该部位的特征维数是多少。
首先,把SE_Block添加进ResNet的初始化里面(和self放一起就行)。
在这里插入图片描述
然后找到resnet的forward函数,假设要把se加在conv5下面,那么我们打印一下这一层的输出。
在这里插入图片描述
可以看到输出的通道数为512,因此我们的se模块应该也是512输入,512输出。
在这里插入图片描述
添加se模块。
在这里插入图片描述
输出的shape与没加模块之前一样,说明加得没问题。
在这里插入图片描述

开始训练

训练时,把加载预训练权重的函数里的strict改成false,net.load_state_dict(torch.load(model_weight_path, map_location=‘cpu’), strict=False),就可以训练了。
在这里插入图片描述

对比效果

(还没加)加个tensorboard看看添加模块前后的区别。
加了模块
在这里插入图片描述
没加模块
在这里插入图片描述
好像没有什么区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值