带有SE注意力机制的ResNet残差网络构建

残差网络ResNet和SE注意力机制自从被提出以后就得到了广泛的应用,在模型搭建过程中,有很多将两者进行结合使用的方法被提出,以是的模型具有更好的性能。

下面是将SE注意力机制应用在不同的ResNet残差网络中的方法。

 SE注意力机制模型图如下:

 基本的残差单元:

 网络输入x,希望输出H(x)。加入残差连接之后,有H(x)=F(x)+x,网络就只需要学习输出一个残差F(x)=H(x)-x,学习残差F(x)=H(x)-x会比直接学习原始特征H(x)简单的多。

不同的ResNet基本组成:

1.SE注意力机制+ResNet18

import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['SENet', 'se_resnet_18', 'se_resnet_34', 'se_resnet_50', 'se_resnet_101',
           'se_resnet_152']

def conv3x3(in_planes, out_planes, stride=1):
    # 定义3x3卷积,并且填充数为1
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

class BasicBlock(nn.Module):
    expansion = 1  # 扩展倍数的属性
    # 用于在 ResNet 中确定每个 BasicBlock 层的输入通道和输出通道之间的倍数关系。通过将输入通道数乘以 expansion,可以得到输出通道数

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)  # 3x3卷积
        self.bn1 = nn.BatchNorm2d(planes)  # 归一化
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)  # 3x3卷积
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample  # 传入的下采样方法保存为一个属性
        self.stride = stride  # 步长

        if planes == 64:  # 输出特征图的通道数
            self.globalAvgPool = nn.AvgPool2d(56, stride=1)  # 全局平均池化
        elif planes == 128:
            self.globalAvgPool = nn.AvgPool2d(28, stride=1)
        elif planes == 256:
            self.globalAvgPool = nn.AvgPool2d(14, stride=1)
        elif planes == 512:
            self.globalAvgPool = nn.AvgPool2d(7, stride=1)
        self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16))  # 全连接
        self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes)  # 全连接
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        residual = x

        out = self.conv1(x)  # 3x3conv,s=1
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)  # 3x3conv,s=0
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        original_out = out
        out = self.globalAvgPool(out)  # # 全局平均池化
        out = out.view(out.size(0), -1)
        # out.size(0) 表示第一个维度的大小保持不变,而 -1 表示在保持其他维度的前提下,自动调整第二个维度的大小
        out = self.fc1(out)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        out = out.view(out.size(0), out.size(1), 1, 1)  # 新张量的形状为 (out.size(0), out.size(1), 1, 1)
        out = out * original_out

        out += residual  # 残差连接
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4  # 扩展倍数的属性
    # 用于在 ResNet 中确定每个 BasicBlock 层的输入通道和输出通道之间的倍数关系。通过将输入通道数乘以 expansion,可以得到输出通道数

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)  # 1x1conv
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,  # 3x3conv
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)  # 1x1conv,输出通道是输入通道的4倍
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        if planes == 64:
            self.globalAvgPool = nn.AvgPool2d(56, stride=1)  # 平均池化
        elif planes == 128:
            self.globalAvgPool = nn.AvgPool2d(28, stride=1)
        elif planes == 256:
            self.globalAvgPool = nn.AvgPool2d(14, stride=1)
        elif planes == 512:
            self.globalAvgPool = nn.AvgPool2d(7, stride=1)
        self.fc1 = nn.Linear(in_features=planes * 4, out_features=round(planes / 4))  # 除 4 取整
        self.fc2 = nn.Linear(in_features=round(planes / 4), out_features=planes * 4)
        self.sigmoid = nn.Sigmoid()
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        original_out = out
        out = self.globalAvgPool(out)
        out = out.view(out.size(0), -1)
        out = self.fc1(out)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        out = out.view(out.size(0),out.size(1),1,1)
        out = out * original_out

        out += residual
        out = self.relu(out)

        return out


class SENet(nn.Module):
    # SE注意力机制

    def __init__(self, block, layers, num_classes=2):
        self.inplanes = 64
        super(SENet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # 最大池化
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # block:指定使用的基本块类型,可以是残差块或其他类型的块
        # 64、128、256、512:指定每个卷积层组中的通道数(即输出特征图的通道数)
        # layers[0]、layers[1]、layers[2]、layers[3]:指定每个卷积层组中的基本块数量
        # stride=2:指定每个卷积层组中的卷积层的步长(stride),默认为 2
        self.avgpool = nn.AvgPool2d(7, stride=1)  # 平均池化
        self.fc = nn.Linear(512 * block.expansion, num_classes)  # 全连接

        for m in self.modules():  # 遍历模型的所有子模块
            if isinstance(m, nn.Conv2d):  # 如果m模块时卷积模块
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels  # 计算卷积核的参数个数 n
                m.weight.data.normal_(0, math.sqrt(2. / n))
                # 对卷积核的权重进行初始化。这里使用了正态分布来初始化权重,均值为 0,标准差为 math.sqrt(2. / n)。这种初始化方法可以帮助模型更好地收敛
            elif isinstance(m, nn.BatchNorm2d):  # 如果m模块是归一化模块
                m.weight.data.fill_(1)  # 归一化层的权重进行初始化,将所有权重设置为 1
                m.bias.data.zero_()  # 归一化层的偏移量进行初始化,将所有偏移量设置为 0

    def _make_layer(self, block, planes, blocks, stride=1):  # 用于创建一个层
        # block是一个模型中的基本单元,planes是层中的通道数,blocks是层中重复的次数,stride是步长,默认值为1
        downsample = None  # 下采样层的目的是降低输出特征图的尺寸和增加通道数,以便将输入的特征图与输出的特征图进行匹配
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),  # 下采样快
                nn.BatchNorm2d(planes * block.expansion),  # 归一化
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
            # block函数的目的是创建一个新的模块,该模块由一个卷积层和一个批归一化层组成,同时也可能包含一个下采样层

        return nn.Sequential(*layers)  # 构建了一个顺序网络容器,将 layers 列表中的模块组合在一起,并将其作为方法的返回值

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)  # 特征提取和降维

        x = self.avgpool(x)  # 将特征降维为一维
        x = x.view(x.size(0), -1)
        x = self.fc(x)  # 全连接层进行分类
        print(x.shape)

        return x


def se_resnet_18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        pretrained 表示是否使用在 ImageNet 数据集上预训练的模型
    """
    # 使用了一个名为 SENet 的类来构建模型,同时也使用了 BasicBlock 类作为 ResNet 中的基本块
    # [2, 2, 2, 2] 是一个列表,表示模型中每个阶段(stage)中重复 BasicBlock 的次数
    model = SENet(BasicBlock, [2, 2, 2, 2], **kwargs)  # 创建含有SE注意机制的残差模块
    return model




2.SE注意力机制+ResNet34

只需要将SE注意力机制+ResNet18部分的代码中的def se_resnet_18部分换成如下即可:

def se_resnet_34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        pretrained 表示是否使用在 ImageNet 数据集上预训练的模型
    """
    # 使用了一个名为 SENet 的类来构建模型,同时也使用了 BasicBlock 类作为 ResNet 中的基本块
    # 模型中每个阶段重复 BasicBlock 的次数为 [3, 4, 6, 3]
    model = SENet(BasicBlock, [3, 4, 6, 3], **kwargs)
    return model

3.SE注意力机制+ResNet50

只需要将SE注意力机制+ResNet18部分的代码中的def se_resnet_18部分换成如下即可:

def se_resnet_50(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        pretrained 表示是否使用在 ImageNet 数据集上预训练的模型
    """
    # 使用了一个名为 SENet 的类来构建模型,同时也使用了 Bottleneck 类作为 ResNet 中的基本块
    # [3, 4, 6, 3] 是一个列表,表示模型中每个阶段(stage)中重复 BasicBlock 的次数
    model = SENet(Bottleneck, [3, 4, 6, 3], **kwargs)
    return model

4.SE注意力机制+ResNet101

只需要将SE注意力机制+ResNet18部分的代码中的def se_resnet_18部分换成如下即可:

def se_resnet_101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        pretrained 表示是否使用在 ImageNet 数据集上预训练的模型
    """
    # 使用了一个名为 SENet 的类来构建模型,同时也使用了 Bottleneck 类作为 ResNet 中的基本块
    # [3, 4, 23, 3] 是一个列表,表示模型中每个阶段(stage)中重复 BasicBlock 的次数
    model = SENet(Bottleneck, [3, 4, 23, 3], **kwargs)
    return model

5.SE注意力机制+ResNet152

只需要将SE注意力机制+ResNet18部分的代码中的def se_resnet_18部分换成如下即可:

def se_resnet_152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        pretrained 表示是否使用在 ImageNet 数据集上预训练的模型
    """
    # 使用了一个名为 SENet 的类来构建模型,同时也使用了 Bottleneck 类作为 ResNet 中的基本块
    # [3, 4, 36, 3] 是一个列表,表示模型中每个阶段(stage)中重复 BasicBlock 的次数
    model = SENet(Bottleneck, [3, 8, 36, 3], **kwargs)
    return model

  • 10
    点赞
  • 79
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值