大语言模型
文章平均质量分 87
骆驼穿针眼
这个作者很懒,什么都没留下…
展开
-
OpenCompass 大模型评测介绍和实战
实战是用3090到本地机上面测试原创 2024-03-04 14:03:43 · 498 阅读 · 0 评论 -
基于 InternLM 和 LangChain 搭建你的知识库(三)
然后,这些检索到的文档被送入一个生成模型,如序列到序列的转换模型,这个模型利用检索到的信息来生成回答或完成给定的文本任务。例如,在回答特定的事实问题、撰写有关特定主题的文章或生成信息丰富的对话回复时,RAG模型可以展现出比传统的生成模型更优越的性能。微调的优势在于能够利用预训练模型在广泛数据上学习到的丰富知识,从而需要较少的标注数据就可以达到较高的性能。这对于数据稀缺的任务尤其有价值。这个数据集应该包括输入和期望的输出,例如,用于情感分析的句子和它们的情感标签,或者用于翻译任务的句子对。原创 2024-02-15 15:50:10 · 1326 阅读 · 0 评论 -
什么是LoRA(Low-Rank Adaptation)?
低秩适应(LoRA)是一种创新技术,它使得在保持预训练神经网络的基础上进行高效定制成为可能,比如在扩散模型或语言模型中的应用。这种方法的核心优势在于其能够通过仅训练相对较少的参数来实现,既保留了完全微调过程中的性能,又显著加快了训练速度。此外,LoRA还大幅度减少了模型检查点的大小,这对于存储和计算资源有限的环境尤其重要。由于这些显著的优势,LoRA已经成为定制人工智能模型的首选方法之一。这种方法涉及对一个已经在大规模数据集上预训练好的模型进行进一步的训练,以使其更好地适应特定的任务或数据集。原创 2024-02-20 10:11:42 · 1180 阅读 · 0 评论 -
XTuner 大模型单卡低成本微调之本地实战
3090单卡微调大模型原创 2024-02-22 12:18:45 · 1248 阅读 · 1 评论 -
Xtuner 大模型单卡低成本微调之本地实战--医学问答
3090本地大模型微调,使用医学问答数据集原创 2024-02-22 17:01:18 · 1198 阅读 · 0 评论 -
XTuner InternLM-Chat 个人小助手认知微调实践
Chat 个人小助手原创 2024-02-23 17:34:57 · 1167 阅读 · 0 评论 -
LMDeploy 大模型量化部署
LMDeploy是LLM在英伟达设备上部署的全流程解决方案。包括模型轻量化、推理和服务原创 2024-02-26 12:55:46 · 1315 阅读 · 0 评论 -
LMDeploy 大模型量化部署实践
3090 本地部署大语言模型实践原创 2024-02-26 15:47:36 · 820 阅读 · 0 评论 -
轻松玩转书生·浦语大模型趣味Demo(二)
大语言模型原创 2024-02-02 10:14:21 · 893 阅读 · 0 评论 -
书生·浦语大模型全链路开源体系----(1)
大语言模型是指具有大规模参数和强大语言理解能力的机器学习模型。这些模型通常使用深度学习技术,特别是递归神经网络(RNN)或变换器(Transformer)等架构。这些模型被训练以理解和生成自然语言,能够处理广泛的语言任务,包括文本生成、机器翻译、问答系统、语言理解等。大语言模型的训练通常分为两个阶段:预训练和微调。在预训练阶段,模型通过大量的文本数据进行自我监督学习,学习语言的结构、语法和语义。在微调阶段,模型根据特定任务的标记数据进行进一步训练,以适应特定应用领域的需求。原创 2024-01-05 15:46:43 · 441 阅读 · 0 评论