目录
前言
A.建议
1.学习算法最重要的是理解算法的每一步,而不是记住算法。
2.建议读者学习算法的时候,自己手动一步一步地运行算法。
B.简介
在C语言中实现张量分解算法通常涉及到复杂的数学计算和矩阵运算,特别是处理高阶张量。这里我们以CP分解和Tucker分解为例简要说明如何在概念层面上设计和理解这些算法,并指出实际实现时可能依赖的库或方法。
一 代码实现
A.CP分解(CANDECOMP/PARAFAC)
CP分解将一个N阶张量 X 分解为多个秩-1张量的和:
其中,是权重系数,
是第n维上的向量,
表示外积操作,
是分解的秩。
在C语言中实现CP分解,需要定义并实现以下步骤:
- 初始化权重系数和因子向量。
- 设计迭代优化算法(如交替最小二乘法ALS)更新各因子向量。
- 计算损失函数(残差平方和或相关度量)并根据梯度下降等优化策略更新模型参数。
- 循环执行上述过程直到达到预设的收敛条件。
// 假设已经定义了结构体Tensor来存储原始张量数据以及用于分解的权重和因子向量数组
struct Tensor {
double *data;
int dims[N];
double *weights; // λ_r
double **factors; // a^(n)_r
};
// 初始化和优化过程伪代码
void cp_decompositio