C语言经典算法之张量分解算法

目录

前言

A.建议

B.简介

一 代码实现

A.CP分解(CANDECOMP/PARAFAC)

B.Tucker分解

二 时空复杂度

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

在C语言中实现张量分解算法通常涉及到复杂的数学计算和矩阵运算,特别是处理高阶张量。这里我们以CP分解和Tucker分解为例简要说明如何在概念层面上设计和理解这些算法,并指出实际实现时可能依赖的库或方法。

一 代码实现

A.CP分解(CANDECOMP/PARAFAC)

CP分解将一个N阶张量 X 分解为多个秩-1张量的和:

X\approx \sum_{r=1}^{R}\lambda_r*a_r^1*a_r^2*...*a_r^N

其中,\lambda是权重系数,a^N 是第n维上的向量,*表示外积操作,R 是分解的秩。

在C语言中实现CP分解,需要定义并实现以下步骤:

  • 初始化权重系数和因子向量。
  • 设计迭代优化算法(如交替最小二乘法ALS)更新各因子向量。
  • 计算损失函数(残差平方和或相关度量)并根据梯度下降等优化策略更新模型参数。
  • 循环执行上述过程直到达到预设的收敛条件。
// 假设已经定义了结构体Tensor来存储原始张量数据以及用于分解的权重和因子向量数组
struct Tensor {
    double *data;
    int dims[N];
    double *weights; // λ_r
    double **factors; // a^(n)_r
};

// 初始化和优化过程伪代码
void cp_decompositio
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值