Stability AI发布3D模型生成AI稳定视频3D

稳定性AI近期发布 稳定的3D视频 (SV3D),一种可以从单个 2D 图像生成 3D 网格对象模型的 AI 模型。 SV3D 是基于 稳定的视频扩散 模型并在 3D 对象生成基准上产生最先进的结果.

SV3D 解决了新颖视图合成 (NVS) 的问题,它尝试在给定对象的一个​​或多个 2D 图像的情况下生成该对象不可见的部分:例如,在给定对象正面图像的情况下生成对象背面的视图。 Stability AI 利用其现有的稳定视频扩散模型,其中包括摄像机控制能力,使其能够生成 轨道 视频,其中相机围绕感兴趣的对象转一圈。 该模型使用从 3D 对象渲染的数据集进行了微调 奥布贾宇宙 数据集。 当评估在 地球同步轨道OmniObject3D 在基准测试中,SV3D 的性能优于基准模型,并实现了新的最先进性能。 根据稳定人工智能:

稳定视频 3D 引入了 3D 生成方面的重大进步,特别是在新颖的视图合成方面。 以前的方法常常要解决有限的视角和输出不一致的问题,与此不同的是,稳定视频 3D 能够从任何给定角度提供连贯的视图,并具有熟练的概括能力。 此功能不仅增强了姿态可控性,还确保了多个视图中对象外观的一致性,进一步改善了真实且准确的 3D 生成的关键方面.

InfoQ 报道了 SV3D 的底层技术, 稳定的视频扩散 (SVD),于 2023 年发布。Stability AI 也在晚些时候发布了 3D 生成的早期尝试 2023: 稳定零位123. 这是基于他们的 Stable Diffusion 1.5 文本到图像模型。 这项工作的灵感来自于开源 零123 3D一代模型创建 艾伦人工智能研究所 (AI2) 作为 Objaverse 项目的一部分.

Zero123 和稳定 Zero123 方法的一个缺点是这些模型“未设计为多视图一致”,因为它们一次仅创建一帧的新视图,因此缺乏 3D 生成的“最关键要求”。 相比之下,SVD 模型经过显式训练以生成一致的多帧视频。 另一个优点是它允许摄像机控制,这不仅仅可以生成简单的轨道 3D 视频。 Stability AI 表示:“据我们所知,SV3D 是第一个基于视频扩散的框架,用于 576x576 分辨率的可控多视图合成."

为了训练 SV3D,Stability AI 使用了 Objaverse 中的对象,并从不同的摄像机角度渲染了每个对象的 21 帧。 他们训练了 SV3D 的三个版本:一种仅使用静态轨道进行训练,一种仅使用动态轨道进行训练,第三种同时使用静态和动态轨道进行训练。 第三个模型比其他两个模型取得了更好的评估指标.

在有关 SV3D 的黑客新闻帖子中,用户 讨论了可能的应用 模型的。 一位用户写道:

如果显示的动画具有代表性,那么网格输出很可能足以在 3D 打印机中使用。 期待尝试这个.

SV3D模型权重 可在 Huggingface 上使用,仅供非商业用途。 该模型可通过 Stability AI 用于商业用途 会员计划.

<think>好的,我现在需要回答用户关于如何使用AI技术生成3D模型以及相关工具和教程的问题。首先,我需要整理用户提供的引用资料,看看有哪些工具和方法已经被提到。 引用[1]提到了Tripo AI,这是一个能够一键生成3D模型的工具,适合不需要特别专业需求的用户。引用[2]介绍了3D AI Studio,同样是一个AI生成3D模型的工具,强调免费使用,适合设计师和开发者。引用[3]讨论了Stable Fast 3D,基于Stable Diffusion的技术,需要较高的硬件配置或者使用云处理。引用[4]提到英伟达的LLaMA-Mesh,通过文字描述生成3D模型,降低了门槛。 接下来,我需要将这些工具分门别类,可能按照在线工具、开源框架、API服务等分类。同时,用户还可能需要教程资源,需要收集相关的教程链接或建议的学习路径。 然后,考虑用户可能的疑问,比如工具的使用步骤、硬件要求、适用场景等。例如,Tripo AI3D AI Studio可能操作简便,适合新手;而Stable Fast 3D需要一定的技术背景。此外,LLaMA-Mesh作为新技术,可能需要更多的学习资源。 还需要注意回答的结构,按照用户的要求分点说明,每个工具给出简介、特点和教程。同时,确保使用正确的中文表达,LaTeX格式只在需要时使用,比如数学公式,但当前问题可能不涉及数学内容,所以可能不需要。不过要检查是否有变量或术语需要格式,但这里可能没有。 最后,生成相关问题,考虑用户可能的后续疑问,比如工具比较、优化方法、应用案例等。确保问题覆盖用户可能感兴趣的方向,帮助他们进一步探索。</think>### AI生成3D模型的工具与教程指南 #### 一、主流AI生成3D模型工具 1. **Tripo AI** - **简介**:支持“图片/文字→3D模型”一键生成,操作简单,适合非专业用户。 - **特点**:支持导出$.obj$、$.glb$等格式,生成速度较快(约20秒)[^1]。 - **教程**:官网提供操作指引,用户只需上传图片或输入文字描述即可生成模型。 2. **3D AI Studio** - **简介**:免费AI工具,支持生成高质量3D资产,适用于设计师和开发者。 - **特点**:内置材质库,支持模型参数调整[^2]。 - **教程**:访问官网查看[快速入门文档](https://3daistudio.com/docs)。 3. **Stable Fast 3D** - **简介**:基于Stable Diffusion优化,可通过图片快速生成3D网格。 - **特点**:需7GB以上显存的GPU或使用云API,适合技术开发者[^3]。 - **教程**: - 通过Hugging Face平台调用模型: ```python from diffusers import StableFast3DPipeline pipeline = StableFast3DPipeline.from_pretrained("stabilityai/stable-fast-3d") model = pipeline("a futuristic car").images[0] ``` - 详细配置指南参考[GitHub仓库](https://github.com/stability-ai/stable-fast-3d)。 4. **LLaMA-Mesh(英伟达)** - **简介**:通过纯文字描述生成3D模型,如输入“一只穿着宇航服的猫”。 - **特点**:依赖大语言模型解析语义,生成拓扑结构优化的网格[^4]。 - **教程**:需等待官方开源代码发布,目前可关注[NVIDIA开发者博客](https://developer.nvidia.com/blog)获取更新。 --- #### 二、核心技术与优化建议 1. **生成原理** - 多数工具基于**扩散模型**(如Stable Diffusion)或**GAN**,通过2D图像推测3D结构。 - 数学表达:$$ \text{3D模型} = \arg\max_{M} P(M|I_{\text{2D}}) \text{ 或 } P(M|T_{\text{描述}}) $$,其中$M$为3D模型,$I_{\text{2D}}$为输入图像,$T_{\text{描述}}$为文字描述。 2. **优化方法** - **硬件不足时**:优先选择云服务(如Stability AI API)。 - **提高精度**:在生成后使用Blender或Maya进行细节修复。 - **参数调整**:调整扩散步数(如50→100步)可提升模型质量,但会增加计算时间。 --- #### 三、应用场景 1. **游戏开发**:快速生成场景道具(如树木、建筑)。 2. **电商展示**:将商品图片3D模型支持AR预览。 3. **影视预演**:用文字生成概念模型辅助分镜设计。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值