视觉测量精度能达到多少?
机器视觉检测技术及应用,随着越来越多的制造商每天使用机器视觉系统对其生产设施进行检测,您在拥有合适的机器视觉检测解决方案的同时,还必须确保您的检测系统尽可能准确和高效。
但在实际场景中,机器视觉检测设备在检测产品时的一些不稳定因素,会直接导致检测精度与效率受到很大的影响。
下面大家一起分析如何根据分辨率,精度,公差的关系指导选型。
根据分辨率 精度 公差进行选型
▶分辨率(Resolution)
计算公式:分辨率 = 视野(Field of View)/像素(Pixel)
比如我要看的产品大小是30mm*10MM,使用200万像素(1600pixel*1200pixel)的相机。因为产品是长条形,为了把产品都放入到视野内,我们计算分辨率的时候要考虑长边对应,此时分辨率为:
分辨率 = 30mm/1600Pixel = 0.019mm/Pixel
▶精度(Accuracy)
计算公式:精度 = 分辨率 x 有效像素
精度的单位是mm。根据产品表面和照明状况的不同,我们可以通过放大图像观察辨别稳定像素的个数,从而得出精度。如果条件不允许实际测试观察,一般的规律是,如果使用正面打光,有效像素为1个,使用背光,有效像素为0.5个。
这个例子我们取1 Pixel,得到精度为0.019mm约等于0.02mm。
机器视觉系统的定位精度如何计算?
假如是30万像素的摄像机,监控的面积为640x480mm,其精度是不是就是1mm了?
30W相机分辨率640*480 正常这样算:用最长的边除去监控面积最长的边 即可,所以精度基本上是1mm,这个是理论值,如果你做测量或者表面划伤检测,肯定不准确,一个像素有可能无法凸显特征。
▶公差(Tolerance)
一般情况下,精度和公差的对应关系如下:
[最小可检测尺寸]= | 10倍精度(精度小一个数量级) | 本例:0.2mm,+0.1mm |
【外观容差】= | 4倍精度 | 本例:最小可检测瑕疵或者污点大小为0.08mm |