CASP16最新赛果:AlphaFold3王座未稳,全球顶尖团队反攻

本文系转载,原文:CASP16最新赛果:AlphaFold3王座未稳,全球顶尖团队反攻

2024年11月30日,备受瞩目的第16届 CASP 比赛结果终于揭晓!作为蛋白质结构预测领域最具权威性和影响力的国际竞赛,CASP 吸引了全球超过200支队伍的积极参与,再次掀起学术界和工业界的热烈讨论。本文根据近日 CASP 会议最新公布的内容,对之前发布的分析进行了一些修订与补充,以更全面准确地呈现本届比赛国内外各课题组的优异表现。

经过激烈角逐,国内多个研究团队取得了显著成绩。其中,江苏理工学院常珊教授&孔韧研究员团队在核酸多聚体预测方面(z-score>-2.0)排名第一,在RNA-配体复合物结构预测方面排名第一,在药物靶标-配体结合预测方面排名第二;南开大学郑伟教授团队在蛋白质复合物hard类蛋白预测方面排名第一,在蛋白质单体单结构域预测方面(z-score>-2.0)课题组排名第二,在核酸多聚体方面(z-score>-2.0)服务器组排名第一,在蛋白质核酸复合物预测方面排名第一,在复合物整体折叠精度估计方面排名第一,在复合物整体界面精度估计排名第二,在多构象预测方面TM-score排名第一;山东大学杨建益教授团队在蛋白质单体单结构域预测方面排名第一,蛋白质复合物预测方面(z-score>-2.0)排名第二,核酸单体、多聚体预测方面(z-score>0.0)服务器组排名第一;张贵军教授团队在EMA组表现出色,在QMODE2(局部界面精度估计、局部界面接触残基识别精度)排名前三,在同多聚体和异多聚体模型筛选方面课题组排名第二,在残基精度评估方面排名第二;黄林团队在核酸单体预测方面排名第二;张海平在配体复合物亲和力预测方面排名第一;黄胜友教授团队在药物靶标-配体结合预测方面课题组排名第三;朱山风研究员团队在原子精度和残基精度评估均排名第一;卜东波研究员团队在蛋白质单体单结构域预测方面(z-score>0.0) 课题组排名第三。

国外华人团队同样表现不俗。其中,程建林教授团队在蛋白质单体单结构域预测方面(z-score>0.0)课题组排名第二,在蛋白质复合物预测方面(z-score>-2.0)课题组排名第三,在复合物整体折叠精度估计方面排名第二,在同多聚体模型筛选方面排名第一;陈世杰教授团队在核酸单体预测方面排名第一,在核酸多聚体预测方面(z-score>0.0)排名第一,在蛋白质核酸复合物预测方面排名第三;张阳教授团队在复合物局部界面接触残基识别精度方面排名第一,在单体模型筛选方面排名第一。

而备受关注的AlphaFold3虽然表现亮眼,但仍逊色于排名前列的参赛团队,尤其在某些复杂的任务(“hard”蛋白复合物与含核酸靶标预测)上,仍然存在一定差距。详细汇总见文章结尾表。

背景

Critical Assessment of Structure Prediction(CASP)是国际著名的蛋白质结构预测比赛,堪称蛋白质结构预测领域的奥林匹克竞赛。CASP 比赛由马里兰大学John Moult教授等人在1994年创立,每两年举行一次,旨在对用于建模大分子结构和复合物的计算方法进行严格评估,推动领域内的技术进步。

在比赛期间,CASP组织者会发布尚未公开实验结构的大分子和大分子复合物(包括蛋白质、核酸、配体),参赛者需要在规定时间内提交预测的结构模型。根据规则,所有参赛队伍分为服务器组和人工组两类。服务器组参赛者须在72小时内提交预测结果;而人工组参赛者有三周时间提交预测结果。因此,服务器组的参赛难度往往比人工组高。

近年来,CASP评估中的计算结构准确性取得了质的飞跃。首先是在CASP14(2020年),DeepMind推出的AlphaFold2在单个蛋白质和蛋白质域的模型准确性取得了难以置信的结果,许多模型的准确性与实验结果相媲美。其次是在CASP15(2022年),密歇根大学郑伟博士(现南开大学郑伟教授)开发的DMFold-Multimer算法显著提升了蛋白质复合物的建模准确性。

CASP16比赛结果

2024年5月到8月,CASP16比赛总共进行了六个类别的实验:(1)蛋白质单体结构预测(REGULAR);(2)蛋白质复合物结构预测(MULTIMER);(3)准确性评估(EMA);(4)核酸结构预测(RNA);(5)配体复合物结构预测(LIGAND);(6)大分子多构象预测(ENSEMBLES)。往届的蛋白质单体结构预测在评测时会根据结构域被分为单结构域评测和多结构域评测。与往届不同,本届取消了蛋白质单体多结构域排名,只保留了单结构域评测。此外,本届CASP新增了核酸多聚体结构预测的排名,这表明CASP对于核酸结构预测的关注进一步加深,也为本届比赛增添了更多看点。

本届比赛热度有增无减,全球顶尖实验室和研究机构齐聚一堂,各参赛团队在多个赛道展开激烈角逐。来自国内的队伍包括:山东大学的杨建益教授团队,南开大学郑伟教授、胡刚教授及密歇根大学、密歇根州立大学、浙江工业大学联合团队,浙江工业大学的张贵军教授团队,华中科技大学的黄胜友教授团队,中国科学技术大学熊鹏团队,江苏理工学院的常珊教授&孔韧研究员团队,复旦大学的朱山风研究员团队,中国科学院大学的卜东波研究员团队,中国科学院大学的张海平团队,清华大学的潘宪明教授团队,中山大学的黄林团队等凭借深厚实力在各赛道中崭露头角。国外的队伍包括密苏里大学的程建林教授团队,密苏里大学的陈世杰教授团队,普渡大学的木原大辅教授团队,斯德哥尔摩大学的Arne Elofsson教授团队,纽约州立大学石溪分校Dima Kozakov教授&波士顿大学Sandor Vajda教授团队,雷丁大学的Liam McGuffin教授团队,国际高级研究学院的Giovanni Bussi教授团队,约翰·霍普金斯大学的David Shortle教授团队,首尔国立大学的Minkyung Baek团队,新加坡国立大学的张阳教授团队等延续了一贯的高水平表现。

今年5月8日,DeepMind团队发布了AlphaFold3,并为用户提供了在线服务器。这一发布迅速引发了学术界的高度关注,AlphaFold3在CASP16中的潜在表现无疑成为各方关注的焦点。为评估其性能,Arne Elofsson教授团队额外注册了参赛组(AF3-server),用于提交AlphaFold3服务器的预测结果,作为权威的基准测试。

蛋白质单体单结构域预测

蛋白质单体单结构域预测一直是CASP的传统赛道。评测者会根据实验结构的结构域将单体蛋白拆解,评估参赛算法在预测基本单元结构方面的能力。与往届一致,本届CASP使用既定指标评估单个蛋白质域的预测准确性。具体来说,CASP评审采用GDT-TS衡量预测蛋白质结构与天然结构之间的相似度,并根据参赛队伍的原始分数计算Z-score统计值。为减少个别极差预测对创新团队整体排名的影响,若Z-score低于某一阈值(-2或0),则该分数将被调整至该阈值。

在蛋白质单体单结构域预测方面,参赛团队数量与上届相当,共有110个参赛组提交了预测结构,竞争依然激烈。根据官方的GDT-TS打分并按照Z-score(>-2.0)去尾排序,杨建益教授团队的Yang-Server排名第一,郑伟教授团队的Zheng-Server排名第二,程建林教授团队的MULTICOM排名第三,且打分分别比排名第七的AF3-server高97%、38%、24%。

由于参赛队伍数量庞大,我们通过取预测结果的最大值对来自同一课题组的多个队伍进行了合并(但始终保留AF3-server),以便更清晰直观地呈现各课题组的整体表现。

图片

图1. CASP16蛋白质单体单结构域预测的排名(Top 30)。(A) 基于GDT-TS指标的sum Z-score>-2.0进行的排名。(B) 基于GDT-TS指标的sum Z-score>0.0进行的排名。红色虚线表示AF3-server对应的分数。数据来源于Rankings of Protein Domains[1]。

蛋白质复合物结构预测

蛋白质复合物结构预测是另一个蛋白质结构预测的重要赛道。与单体结构预测相比,复合物预测不仅需要确定各个亚基的准确结构,还要解决多个亚基之间的相互作用问题。因此,蛋白质复合物结构预测赛道比单体结构预测更具挑战性。今年共有86支参赛队伍投身蛋白质复合物结构预测赛道。根据官方的整体打分并按照Z-score(>-2.0)去尾排序,木原大辅教授团队的KiharaLab排名第一,杨建益教授团队的Yang-Multimer排名第二,程建林教授团队的MULTICOM_human排名第三,郑伟教授团队的MIEnsembles-Server排名第四。AF3-server排名第五,打分仍低于前四名至少22%。这里我们使用了相同的方式汇总课题组排名。

图片

图2. CASP16蛋白质复合物结构预测的排名(Top 30)。(A) 基于官方计算公式的sum Z-score>-2.0进行的排名。(B) 基于官方计算公式的sum Z-score>0.0进行的排名。红色虚线表示AF3-server对应的分数。数据来源于Rankings of Protein multimers[2]。

为了更准确地评估蛋白质复合物结构预测的难度,CASP官方将不同的蛋白质复合物靶标(target)进行了分类,分为“easy”、“medium”和“hard”三类。“easy”靶标具有已知的复合物模板,因此这类靶标的预测相对简单。“medium”靶标则是没有复合物模板,但存在单体蛋白模板的复合物。这类靶标需要在没有完整的复合物模板的情况下,根据单体蛋白的模板信息推测复合物的组装方式。而“hard”靶标既没有复合物模板,也缺少单体蛋白模板,因此预测难度最高,需要完全依赖参赛者的计算模型来预测复合物结构。

CASP同样展示了“hard”类蛋白质复合物的排名。官方排名显示,郑伟教授团队的Zheng排名第一,大幅领先其他参赛团队,整体打分(8.5008)高于排名第二的杨建益教授团队(5.8028)46%,远超AF3-server,凸显郑伟教授团队在未知模板蛋白质复合物预测中的领先表现。

图片

图3. CASP16 “hard”蛋白质复合物结构预测的排名(Top 30)。基于sum Z-score>-2.0 进行的排名。红色虚线表示AF3-server对应的分数。数据来源于Rankings of Protein multimers[3]。

核酸单体结构预测

上一届CASP首次新增了RNA结构预测类别,但结果显示深度学习方法似乎还没有更传统的方法有效。本届CASP依旧包括RNA结构预测类别,并扩展了靶标的范围,涵盖了RNA/DNA单体、RNA多聚体、蛋白质-核酸复合物以及RNA-配体复合物等多个类别。

在RNA单体结构预测方面,参赛队伍数量显著增加,相较于上届的42支队伍,本届CASP的参赛队伍已增至64支。根据官方排名,前三名均为人工组。其中陈世杰教授团队的Vfold排名第一,黄林团队的GuangzhouRNA-human排名第二,木原大辅教授团队的KiharaLab排名第三。杨建益教授团队的Yang-Server为服务器组第一,总排名第四。前三名打分均比AF3-server高至少45%。前三名人工组的表现显著领先于其他队伍,这说明目前包括AF3-server在内的自动服务器算法在RNA结构预测领域还有待提高。

图片

图4. CASP16 核酸单体结构预测的基于sum Z-score>0.0进行的排名(Top 50)。红色虚线表示AF3-server对应的分数。数据源自Rankings of RNA/DNA monomers[4]。

核酸多聚体结构预测

本届CASP的RNA多聚体结构预测面临着诸多挑战,主要源于其较高的化学计量数和庞大的结构规模。与RNA单体结构预测不同,参赛者不仅需要解决如何精确组装这些庞大的多聚体,还需要考虑多种可能的构象变化。即使如此,依然有32个队伍提交了预测结果。

根据官方的整体打分并按照Z-score(>-2.0)去尾排序,常珊教授&孔韧研究员团队的CoDock排名第一,陈世杰教授团队的Vfold排名第二,木原大辅教授团队的KiharaLab排名第三,黄林团队的GuangzhouRNA-human排名第四服务器组中郑伟教授团队的NKRNA-s排名第一。

根据官方的整体打分并按照Z-score(>0.0)去尾排序,陈世杰教授团队的Vfold排名第一,常珊教授&孔韧研究员团队的CoDock排名第二,木原大辅教授团队的KiharaLab排名第三,黄林团队的GuangzhouRNA-human排名第四。服务器组中杨建益教授团队的Yang-Server排名第一,郑伟教授团队的NKRNA-s排名第二。

不论以何种评测方式,AF3-server均排名第十,且打分远低于排名前列的人工组。

图片

图5. CASP16 核酸多聚体结构预测排名。(A) 基于官方计算公式的sum Z-score>-2.0进行的排名。(B) 基于官方计算公式的sum Z-score>0.0进行的排名。红色虚线表示AF3-sever对应的分数。数据来自Rankings of RNA/DNA multimers[5]。

从以上结果可以看出,AlphaFold3在核酸结构预测方面仍面临挑战,目前较为成功的方法依然依赖特定力场、统计模型,以及人类专家在模型选择上的指导。

蛋白质-核酸复合物结构预测

本届CASP首次引入了蛋白质-核酸复合物结构预测。与单独预测蛋白质或核酸的结构相比,蛋白质-核酸复合物的预测更为关键,因为在生物体内,许多蛋白质通过与RNA结合形成复合物,从而执行其生物学功能。

CASP评委在会议上正式公布了蛋白质-核酸复合物结构预测的排名。其中,郑伟教授团队的MIEnsembles-Server排名第一,木原大辅教授团队的KiharaLab排名第二,陈世杰教授团队的Vfold排名第三,AF3-server排名第十二。

图片

图6. CASP16 蛋白质-核酸复合物结构预测排名。图片源自CASP16 Presentations[6]。

RNA-配体复合物结构预测

本届CASP首次引入了RNA-配体复合物结构预测。CASP评委在会议上也公布这一赛道的排名,常珊教授&孔韧研究员团队的CoDock位居第一。

图片

图片

图7. CASP16 RNA-配体复合物结构预测排名。图片源自CASP16 Presentations[7]。

准确性评估

模型准确性估计赛道要求参赛者评估蛋白质结构模型的准确度。在本届CASP中,准确性估计类别的评估对象涵盖了复合物整体精度估计(QMODE1)、复合物局部精度估计(QMODE2)、模型筛选(QMODE3)以及准确性自我评估(self-assessment)等四个方面。其中QMODE1和QMODE2要求参赛者对CASP16收集的预测模型进行评估,QMODE3要求参赛者对MassiveFold模型进行评估,而self-assessment要求参赛者对自己提交的模型进行评估。

在复合物整体折叠精度估计(SCORE)方面,郑伟教授团队的MIEnsembles-Server排名第一,程建林教授团队的MULTICOM_LLM排名第二。在复合物整体界面精度估计(QSCORE)方面,Liam McGuffin教授团队的ModFOLDdock2排名第一,郑伟教授团队的MIEnsembles-Server排名第二,张贵军教授团队的GuijunLab-QA在参赛队伍中排名第三。

图片

图8. CASP16 准确性估计的整体精度估计(QMODE1)排名。(A) 复合物整体折叠精度估计(SCORE)排名。(B) 复合物整体界面精度估计(QSCORE)排名。图片源自Rankings of EMA (accuracy)[8]。

在复合物局部界面精度估计方面,Liam McGuffin教授团队的ModFOLDdock2和ModFOLDdock2R名列前二,张贵军教授团队的GuijunLab-QA紧跟其后;在复合物局部界面接触残基识别精度方面,张阳教授团队的MQA排名第一,Liam McGuffin教授团队的ModFOLDdock2S排名第二,张贵军教授团队的GuijunLab-QA排名第三。

在单体模型筛选方面,张阳教授团队的MQA排名第一,Liam McGuffin教授团队的McGuffin排名第二,郑伟教授团队的MIEnsembles-Server排名第三;在同多聚体模型筛选方面,程建林教授团队的MULTICOM_LLM和MULTICOM_human名列前二,张贵军教授团队的GuijunLab-PAthreader排名第三;在异多聚体模型筛选方面,张贵军教授团队的GuijunLab-Human在参赛队伍中排名第二。CASP评审额外统计了不同类别模型筛选排名的总和,图7D表明David Shortle教授团队的SHORTLE (050)和郑伟教授团队的MIEnsembles-Server (110)在不同类型的模型筛选方面有着更好的泛用性。

此外,朱山风研究员团队的plmfold在原子和残基精度评估方面均排名第一;张贵军教授团队的GuijunLab-Human在残基精度评估方面排名第二。

图片

图片

图片

图片

图9. CASP16 准确性估计的其他排名。(A) 复合物局部界面精度估计排名。(B) 复合物局部界面接触残基识别精度排名。(C) 模型筛选排名(QMODE3)。(D) 模型筛选排名总和。(E) 原子精度估计排名。(F) 残基精度估计排名。图片源自Rankings of EMA (accuracy)[9]与CASP16 Presentations[10]。

配体复合物结构预测

CASP在上一届首次引入配体复合物结构预测。在本届CASP中,将蛋白质排名分为药物靶标的配体结合模式预测和亲和力预测两方面进行。在药物靶标配体结合预测方面,Dima Kozakov教授&Sandor Vajda教授团队的ClusPro排名第一,常珊教授&孔韧研究员团队的CoDock排名第二,黄胜友教授团队的Huang-HUST排名第三,程建林教授团队的MULTICOM_ligand排名第四(我们采用与上文相同的方式汇总课题组的排名)。在亲和力预测方面,张海平团队的haiping位居第一。

图片

图10. CASP16配体复合物排名。(A) 药物靶标配体结合预测排名。(B) 亲和力预测排名。数据与图片源自CASP官方网站Rankings of Ligands[11]。

大分子多构象预测

尽管AlphaFold2在静态蛋白质结构预测上取得了显著成果,但在应对蛋白质的多构象状态和动态变化方面仍面临困难。许多蛋白质在生物体内并非仅以单一构象存在,而是在不同环境条件下展现出多种稳定或亚稳态构象。因此,评估多构象预测方法的重要性日益凸显。

上一届CASP首次纳入了这一类别,而本届CASP进一步扩充了该类别的靶标。为了评估此类别各参赛队伍的表现,我们使用官方公开的天然结构和各组提交的预测模型结构计算TM-score。结果显示,郑伟教授团队的Zheng排名第一,木原大辅教授团队的KiharaLab排名第二,Minkyung Baek团队的CSSB_experimental排名第三。AF3-server排名第十一,其TM-score比Zheng低11%。

图片

图11. CASP16 大分子多构象预测排名(Top 50)。我们使用官方公开的天然结构和各组提交的best model计算TM-score,并遵循Ensembles评审的匹配方式对预测模型进行匹配。数据来源CASP16 predictions[12]。

总结

本届CASP比赛,国内外各参赛团队在不同赛道上展示了各自的成果与进步,下面附国内外各课题组的成绩总结。

国内课题组:

课题组

CASP16 成绩汇总

郑伟

蛋白质单体单结构域预测(z-score>-2.0)课题组排名第二
 蛋白质复合物 hard 蛋白预测排名第一
 核酸多聚体预测(z-score>-2.0)服务器组排名第一
 蛋白质核酸复合物预测排名第一
 复合物整体折叠精度估计排名第一
 复合物整体界面精度估计排名第二
 单体模型筛选排名第三
 多构象预测 TM-score排名第一

杨建益

蛋白质单体单结构域预测排名第一
 蛋白质复合物预测(z-score>-2.0)排名第二
 蛋白质复合物 hard 蛋白预测课题组排名第二
 核酸单体预测服务器组排名第一
 核酸多聚体预测(z-score>0.0)服务器组排名第一

张贵军

复合物整体界面精度估计参赛组排名第三
 复合物局部界面精度估计课题组排名第二
 复合物局部界面接触残基识别精度排名第三
 同多聚体模型筛选课题组排名第二
 异多聚体模型筛选参赛队伍排名第二
 残基精度评估排名第二

常珊 & 孔韧

核酸多聚体预测(z-score>-2.0)排名第一
 RNA-配体复合物预测排名第一
 药物靶标-配体结合预测课题组排名第二

黄林

核酸单体预测排名第二

张海平

配体复合物亲和力预测排名第一

黄胜友

药物靶标-配体结合预测课题组排名第三

朱山风

原子精度评估排名第一
 残基精度评估排名第一

卜东波

蛋白质单体单结构域预测(z-score>0.0)课题组排名第三

国外课题组:

课题组

CASP16 成绩汇总

程建林

蛋白质单体单结构域预测(z-score>0.0)课题组排名第二
 蛋白质复合物预测(z-score>-2.0)课题组排名第三
 蛋白质复合物 hard 蛋白预测(z-score>-2.0)课题组排名第三
 复合物整体折叠精度估计排名第二
 同多聚体模型筛选排名第一

陈世杰

核酸单体预测排名第一
 核酸多聚体预测(z-score>0.0)排名第一
 蛋白质核酸复合物预测排名第三

张阳

复合物局部界面接触残基识别精度排名第一
 单体模型筛选排名第一

木原大辅

蛋白质复合物预测(z-score>-2.0)排名第一
 核酸单体预测排名第三
 核酸多聚体预测排名第三
 蛋白质核酸复合物预测排名第二
 多构象预测 TM-score排名第二

Dima Kozakov & Sandor Vajda

蛋白质复合物预测(z-score>0.0)排名第一
 药物靶标-配体结合预测排名第一

Liam McGuffin

复合物整体界面精度估计排名第一
 复合物局部界面精度估计排名第一
 复合物局部界面接触残基识别精度排名第二
 单体模型筛选排名第二

Minkyung Baek

多构象预测 TM-score排名第三

AF3-server:

类别

排名

蛋白质单体单结构域预测(z-score>-2.0)

7th

蛋白质复合物预测(z-score>-2.0)

5th

核酸单体预测

9th

核酸多聚体预测

10th

蛋白质-核酸复合物预测

12th

大分子多构象预测

11th

参考资料

[1]

Rankings of Protein Domains:https://predictioncenter.org/casp16/zscores_final.cgi

[2]

Rankings of Protein multimers:https://predictioncenter.org/casp16/zscores_multimer.cgi

[3]

Rankings of Protein multimers:https://predictioncenter.org/casp16/zscores_multimer.cgi

[4]

Rankings of RNA/DNA monomers:https://predictioncenter.org/casp16/zscores_rna.cgi

[5]

Rankings of RNA/DNA multimers:https://predictioncenter.org/casp16/zscores_rna_multimer.cgi

[6]

CASP16 Presentations:https://predictioncenter.org/casp16/doc/presentations/

[7]

CASP16 Presentations:https://predictioncenter.org/casp16/doc/presentations/

[8]

Rankings of EMA (accuracy):https://predictioncenter.org/casp16/zscores_EMA.cgi

[9]

Rankings of EMA (accuracy):https://predictioncenter.org/casp16/zscores_EMA.cgi

[10]

CASP16 Presentations:https://predictioncenter.org/casp16/doc/presentations/

[11]

Rankings of Ligands:https://predictioncenter.org/casp16/zscores_ligand.cgi

[12]

CASP16 predictions:https://predictioncenter.org/download_area/CASP16/predictions/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值