多尺度融合的MRI脑肿瘤图像分割方法

本文提出了一种改进的U-Net网络,结合残差网络和上下文增强模块,用于MRI脑肿瘤图像分割。实验结果显示,该模型在脑肿瘤轮廓分割上的正确率高达0.957 2,提高了分割精度,对于临床诊断有积极意义。
摘要由CSDN通过智能技术生成

摘要

脑肿瘤是大脑中细胞非正常生长的病症,是由于颅脑内部组织出现癌变而导致的高危害疾病。目前脑肿瘤诊断十分依赖于医学影像技术,其中磁共振成像的应用最为广泛。因此,基于核磁共振图像的脑肿瘤分割具有重要意义。提出一种基于U-Net改进的脑肿瘤图像分割网络,结合残差网络和一种用于增强上下文信息的模块,并在网络中加入空洞空间卷积池化金字塔进行处理,对癌症影像档案提供的脑部胶质瘤MRI图像数据集进行实验验证。结果表明,基于U-Net改进的脑肿瘤图像分割网络正确率达到0.957 2,能够有效提高分割精度,提升脑肿瘤识别效率,对于脑肿瘤的临床诊断具有积极意义。

0 引言

脑肿瘤是大脑中细胞非正常生长的病症,是由于颅脑内部组织出现癌变而导致的高危害疾病。脑肿瘤分割通过识别与正常组织异常的区域来分割肿瘤区域位置和范围

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值