【摘 要】为实现业务需求和网络能力的实时精准匹配,需要在网络端引入智能采集处理功能对交互数据进行分析处理,实现对6G网络状态的实时感知和估计预测。设计一种基于机器学习的网络状态感知分析方法,通过隐树模型的多层节点感知能力,能够根据通信网络历史数据,从数据层面对当前的通信网络状态进行量化感知,并对网络后续状态进行初步预测,可以为业务传输层的拥塞控制和移动网络层资源调度提供指导。
【关键词】网络状态感知;贝叶斯网络;数据分析
0 引言
面向2030年,6G时代的通信应用场景将比目前发生根本性变化。在6G的时代会涌现出人机之间、机器之间、节点之间、多个节点与多个节点等多种连接的混合模式,这些网络场景需要任务驱动的网络。满足多种场景的多样化业务需求,对可靠性、确定性、智能化等提出了更高要求[1]。在6G时代,通信网络必须实现贯通空天地多域融合,构建为一个整体化的系统,从而基于全领域全要素面向多样化通信网络的状态感知、通信、计算能力的系统构建,增强网络性能的同时,赋予网络自身的自我分析、自我优化、自我维护的新能力。
当使用条件变得复杂与面临业务更加丰富时,以当前通信网络的架构,必须进行很大程度的人工配置和修正,这样会使管理成本大幅增加。随着基于认知驱动和意图驱动的发展,通过在网络中引入