摘要
为了提高天然气负荷预测精度,针对不同时间段的天然气负荷周期性及非线性特点,提出一种相关向量机模型(RVM)和广义回归神经网络模型(GRNN)组合的优化模型。采用RVM对天然气负荷数据值数据进行初步建模,并用GRNN对RVM模型的残差进行非线性建模。将RVM模型、GRNN模型及RVM-GRNN组合模型对集中供热和非供热阶段的天然气负荷值分别进行预测,将组合模型分别与单一模型预测结果进行比较,并通过实际案例加以验证。实验结果表明,组合模型预测精度高于单一模型预测精度,在非供热阶段和集中供热阶段,组合模型的MAE、MSE、MAPE均小于单一模型,分别为0.155 8、0.047 2、0.041 6和0.959 7、1.660 3、0.027 9。除与自身单一模型进行比较外,将组合模型预测传统负荷预测模型进行比较,结果显示组合模型预测结果均优于传统预测模型。由此得出,RVM-GRNN组合模型能够捕捉天然气负荷值变化规律,满足天然气负荷预测要求,可为天然气输送及管网铺设提供依据。
0 引言