迁移学习方法和理论

迁移学习之方法

1、迁移学习方法

一、基于样本权重迁移法

基于样本权重的迁移方法是解决迁移学习问题的有效方法之一。在迁移学习中,给定一个 D t = { X i , y i } i = 1 N s 和一个无标签的目标域 D t = { X j } j = 1 N t D_t={\{X_i,y_i}\}^{N_s}_{i=1}和一个无标签的目标域D_t={\{X_j}\}^{N_t}_{j=1} Dt={Xi,yi}i=1Ns和一个无标签的目标域Dt={Xj}j=1Nt。两个领域的联合概率分布不同,即 P s ( x , y ) ≠ P t ( x , y ) P_s(x,y) ≠ P_t(x,y) Ps(x,y)=Pt(x,y)。令向量v∈ R N R_N RN表示源域中每个样本的权重,则样本权重迁移法的学习目标是学习一个最优的权重向量 v ∗ v^* v,使得经过权重计算后源域和目标域的概率分布差异变小: D ( P s ( x , y ∣ v ) , P t ( x , y ) ) < D ( P s , ( x , y ) , P t ( x , y ) ) D(P_s(x,y|v),P_t(x,y)) < D(P_s,(x, y),P_t(x,y)) D(Ps(x,yv),Pt(x,y))<D(Ps,(x,y),Pt(x,y))。基于此权重,学习器在目标域上的风险将达到最小:
在这里插入图片描述

其中的向量v即为此类方法学习的重点。

(1)基于样本选择的方法

核心思想

基于样本选择的方法侧重于从源域数据集中筛选出与目标域数据集分布相似的样本,以减小源域和目标域之间的差异。
在这里插入图片描述

关键组件

1、样本选择器(Instance Selector)

  • 作用:从源域数据集中选择出一部分样本(Subset),使得这部分样本的数据分布与目标域数据分布差异较小。
  • 实现方式:可以通过各种度量准则(如MMD距离、欧氏距离等)来评估源域样本与目标域样本之间的相似度,并选择最相似的样本。

2、表现评估器(Performance Evaluator)

  • 作用:评估当前选择的样本与目标域数据集的量化差异程度。
  • 实现方式:使用各种统计或机器学习技术来评估所选样本的代表性和目标域数据的相似性。

3、反馈机制(Reward/Feedback Mechanism)

  • 作用:根据表现评估器的结果,对样本选择器选择出的样本进行反馈,以指导其后续的选择过程。
  • 实现方式:可以通过强化学习等方法来不断优化样本选择器的选择策略。

上述决策过程可以被近似看成一个强化学习的马尔可夫决策过程(Markov Decision Process,MDP)。因此,一个非常自然的想法应运而生:我们可以将一些成熟的强化学习方法直接应用于样本选择。如此,我们只要设计好上述样本选择器、表现评估器和反馈机制就可达成目标。例如,我们可以利用经典的REINFORCE算法来学习一种选择策略(Policy),还可以利用已有的 Deep Q Learning的方法来完成此过程。

因此,以是否采用强化学习来分类,基于样本选择的迁移学习方法可以被简单地分为两大类:非强化学习法和强化学习法。

1)基于非强化学习的样本选择法

将基于非强化学习的样本选择方法分为三类:基于距离度量的方法、基于元学习的方法,以及其他方法

基于距离度量的方法非常直接:利用人为设定的某种度量准则使得最终选择的样本在该度量准则下能达到最优值。常用的度量准则包括交叉熵、最大均值差异和KL散度等。有关度量准则的介绍可以参照附录。此类方法可以被视为一种两阶段的学习方式:首先利用度量准则选择出最好的源域样本,然后基于筛选出的源域样本进行训练。注意:这两个过程在此类方法中存在先后关系、它们并不可以进行交互,即第一阶段选出的样本数据对于第二阶段是固定的,并不存在后续的选择过程。

基于元学习的方法的主要思想是设计一个额外的网络(即元网络)来学习样本的选择方式,并且在训练过程中通过与主要的学习任务不断交互来修正选择结果。因此,这个过程是相互学习的、而非上述基于距离度量方法的二阶段形式。

其他方法还包括基于贝叶斯的选择方法。

2)基于强化学习的样本选择法

在应用强化学习方法时,最重要的是对强化学习中的核心概念状态(State)、行为(Action)和反馈(Reward)给予合适的定义,之后才能完成强化学习的建模。在此方法中,这些概念的含义对应如下。

  • 状态(State):由当前批次样本的权重向量和特征提取器的参数构成。

  • 行为(Action):主要执行选择操作,因此它是一个二值向量,0表示不选择当前样本,1表示选择当前样本。

  • 反馈(Reward):在本问题中,评估方法是源域和目标域的分布差异。

特别地,反馈函数亦是强化学习的重点。在本问题中,反馈函数被表示为

在这里插入图片描述

上标s、t分别表示源域和目标域。d(·,·)表示一个分布度量函数,(s,a,s’) 表示状态s经过动作a后变为状态s’,Φ表示对应的特征。 B j − 1 和 B j B_{j-1}和B_j Bj1Bj分别表示第j-1轮和第j轮迭代时一个批次的数据。整个方法的最优解可以通过深度网络求解。

(2)基于权重自适应的方法

核心思想

基于权重自适应的方法侧重于为源域数据集中的每个样本分配一个权重,使得在训练过程中,与目标域更相似的样本具有更高的权重,从而增强模型对目标域数据的适应性。

关键步骤

1、权重计算

  • 使用各种相似度度量方法(如余弦相似度、核方法等)计算源域样本与目标域样本之间的相似度。
  • 根据相似度为每个源域样本分配一个权重,与目标域越相似的样本权重越高。

2、加权训练

  • 在训练过程中,使用加权后的源域数据集进行训练。权重较高的样本对模型参数的更新影响更大。
  • 可以通过调整损失函数中的权重项来实现加权训练。

二、统计特征变换迁移法

(1)最大均值差异法(MMD)

1. 定义与原理

最大均值差异(MMD)是一种用于衡量两个概率分布差异的度量方法,尤其在机器学习和统计学中的无参数和核方法中广泛应用。MMD基于一个假设:如果两个分布相同,那么从这两个分布中抽取的样本的统计特性也应该相同。MMD通过计算两个分布映射到另一个空间(通常是再生核希尔伯特空间RKHS)中数据的均值之差来评估它们之间的差异。

2. 公式与计算

MMD的定义公式为:

MMD 2 = sup ⁡ f ∈ F ( E x ∼ P [ f ( x ) ] − E y ∼ Q [ f ( y ) ] ) 2 \text{MMD}^2 = \sup_{f \in \mathcal{F}} \left( \mathbb{E}_{x \sim P} \left[ f(x) \right] - \mathbb{E}_{y \sim Q} \left[ f(y) \right] \right)^2 MMD2=supfF(ExP[f(x)]EyQ[f(y)])2

其中,F是RKHS中的一组函数,ExP[f(x)]和EyQ[f(y)]分别表示函数f在分布PQ下的期望值。

在实际应用中,MMD可以通过特定的核函数(如高斯核)进行计算,公式简化为:

MMD 2 = E x , x ′ ∼ P [ k ( x , x ′ ) ] + E y , y ′ ∼ Q [ k ( y , y ′ ) ] − 2 E x ∼ P , y ∼ Q [ k ( x , y ) ] \text{MMD}^2 = \mathbb{E}_{x,x' \sim P} \left[ k(x, x') \right] + \mathbb{E}_{y,y' \sim Q} \left[ k(y, y') \right] - 2\mathbb{E}_{x \sim P, y \sim Q} \left[ k(x, y) \right] MMD2=Ex,xP[k(x,x)]+Ey,yQ[k(y,y)]2ExP,yQ[k(x,y)]

3. 特性与应用

  • 无参数度量:MMD不依赖于数据分布的具体形式。
  • 灵活性:通过选择不同的核函数,MMD可以适应不同的数据特性和分析需求。
  • 可计算性:尽管MMD的定义涉及分布的期望值,但它可以通过样本估计进行有效计算,适用于实际数据分析。
  • 使用场景:MMD常用于无参数的两样本测试,检验两个样本是否来自同一分布;在机器学习中,特别是在生成模型如GAN中,MMD用于评估生成数据分布与真实数据分布之间的差异;还可以用于特征选择和变换。

(2)度量学习法

1. 定义

度量学习(Metric Learning)是一种机器学习方法,旨在学习一个距离度量或相似性函数,该函数能够反映数据点之间的内在关系或结构。通过优化这个度量函数,度量学习能够使得在特定任务(如分类、聚类)中,相似的数据点之间的距离更近,而不相似的数据点之间的距离更远。

2. 方法与算法

度量学习的方法多种多样,包括但不限于:

  • 马氏距离度量学习:学习一个线性变换矩阵,将数据点映射到一个新的空间中,并在该空间中计算马氏距离。
  • 大间隔最近邻(Large Margin Nearest Neighbor, LMNN):通过优化一个目标函数,使得同类样本之间的距离尽可能小,而不同类样本之间的距离尽可能大,并且保持一定的间隔。
  • 信息度量学习(Information-Theoretic Metric Learning, ITML):在保持原始度量的一些重要属性的同时,学习一个新的度量,使其更好地适应特定的任务。

3. 应用

度量学习在多个领域都有广泛的应用,如图像识别、人脸识别、文本分类、推荐系统等。通过学习一个合适的距离度量,度量学习能够显著提高这些任务的性能。

结论

最大均值差异法(MMD)和度量学习法都是机器学习中重要的方法。MMD主要用于衡量两个概率分布之间的差异,而度量学习则关注于学习一个合适的距离度量以反映数据点之间的内在关系。这两种方法各有特点和应用场景,在机器学习和数据分析中发挥着重要作用。

三、基于集合特征的方法

与基于统计特征的方法相比,基于几何特征的方法考虑到数据可能具有的空间几何结构,因此常常能获得简洁有效的表达与效果。与统计特征类似,几何特征也不可胜数。简要介绍三类几何特征变换法:子空间变换法、流形空间变换法以及最优传输法

(1)子空间变换法

原理
子空间变换法是一种用于处理高维数据的降维方法,它能够将原始数据映射到一个低维子空间中,从而实现数据的压缩和降维。这种方法的核心思想是通过寻找数据中的主要特征子空间来实现数据的降维。

常用方法

  • 主成分分析(PCA):通过寻找数据中的主成分(即数据变化最大的方向)来实现降维。PCA将数据投影到一个新的坐标系中,使得数据的方差最大化。
  • 线性判别分析(LDA):用于数据分类和特征提取,主要思想是寻找数据中最能区分不同类别的特征向量,从而实现数据的降维和分类。
  • 独立成分分析(ICA):将数据分解为相互独立的成分,实现数据的分离和降维。ICA常用于信号处理领域。

应用
子空间变换法广泛应用于数据挖掘、模式识别、图像处理等领域,有助于发现数据中隐藏的模式和规律,进而进行有效的数据分析和处理。

(2)流形空间变换法

原理
流形空间变换法是基于流形学习的一种方法,它假设数据分布在一个低维流形上,而不是简单地分布在一个低维子空间中。流形学习旨在发现数据中的内在低维结构,并通过非线性变换将其映射到低维空间中。

常用方法

  • 等距映射(ISOMAP):通过保持数据点之间的测地距离(即两点之间的最短路径长度)来实现降维。
  • 局部线性嵌入(LLE):假设数据在局部是线性的,通过保持数据点之间的局部线性关系来实现降维。
  • 拉普拉斯特征映射(LE):利用图论中的拉普拉斯算子来发现数据的内在结构,并通过最小化图上的能量函数来实现降维。

应用
流形空间变换法适用于处理具有复杂非线性结构的数据集,如图像、语音等。在图像识别、语音处理等领域有广泛应用。

(3)最优传输法

原理
最优传输理论(Optimal Transport Theory)是一种数学理论,它研究如何以最小的“代价”将一个概率分布变换为另一个概率分布。在最优传输问题中,通常定义一个传输代价函数来衡量从一个点传输到另一个点的成本,并寻找一个传输方案使得总传输代价最小。

应用

  • 计算机图形学:在纹理贴图、曲面参数化等领域,最优传输理论可用于实现保面积或保角度的映射,从而减小映射过程中的几何畸变。
  • 生成式AI:在GAN模型、Diffusion模型等生成式AI模型中,最优传输理论为生成数据的分布变换提供了理论基础。通过计算从白噪声到数据分布的传输映射,可以实现数据的生成和变换。
  • 机器学习:在机器学习任务中,如域适应、聚类等,最优传输理论可用于度量不同分布之间的距离或相似性,并帮助优化模型性能。

二、迁移学习理论、评测与模型选择

传统的机器学习通常采用数据“独立同分布”这一假设,即训练数据和测试数据是在同一数据分布中相互独立地采样出来的,并基于此构建了诸如PAC可学习理论的机器学习理论。这些理论表明模型的泛化误差可以由模型的训练误差以及训练样本的数目所界定,并且误差会随着训练样本的增加而减小。在迁移学习中,源域和目标域的数据通常来自不同的数据分布,这使得在源域上训练好的模型很难直接在目标域数据上取得好的效果。因此,如何衡量并降低两个领域之间的分布差异从而使得源域上的模型可以更好地泛化到目标域成为迁移学习领域的核心问题。

H-divergence(H-散度)

定义与背景

H-divergence是信息论中的一个概念,它是衡量两个概率分布差异的一种度量方式,特别适用于迁移学习中的领域自适应问题。在迁移学习中,由于源领域和目标领域的数据分布可能不同,因此需要一种有效的度量来评估这两个领域之间的差异,以便采取相应的策略来减少这种差异,从而提高目标领域任务的性能。

公式与解释
在这里插入图片描述

性质

  • 非对称性:与KL散度类似,H-divergence也可能是非对称的,即D**H(p∣∣q)不一定等于D**H(q∣∣p)。
  • 优化问题:H-divergence的求解可以看作是一个优化问题,其目标是找到一个最优的函数f来最大化两个分布之间的差异。
  • 上界性质:在某些情况下,H-divergence可以看作是两个分布之间差异的上界,这有助于在理论上分析领域自适应算法的性能。

应用

在迁移学习中,H-divergence被广泛应用于领域自适应问题中。通过计算源领域和目标领域之间的H-divergence,可以评估这两个领域之间的差异程度,并据此设计相应的领域自适应策略。例如,可以通过最小化H-divergence来减少源领域和目标领域之间的差异,从而提高目标领域任务的性能。常见的领域自适应方法包括基于特征的迁移、基于模型的迁移和基于关系的迁移等,这些方法都可以结合H-divergence来进行优化。

HΔH-distance

定义

HΔH-distance是在迁移学习领域中被提出的一种理论分析工具,用于量化源域和目标域之间的分布差异。其定义基于假设空间F中的两个假设(hypotheses)f’和f’'在源域和目标域上表现的不一致性。具体来说,HΔH-distance衡量的是两个假设在目标域上预测不一致的样本比例与在源域上预测不一致的样本比例之差的最大值。

数学上,HΔH-distance可以表示为:

d H Δ H ( P , Q ) : = sup ⁡ f ′ , f ′ ′ ∈ F ∣ E x ∼ Q [ I [ f ′ ( x ) ≠ f ′ ′ ( x ) ] ] − E x ∼ P [ I [ f ′ ( x ) ≠ f ′ ′ ( x ) ] d_{\mathcal{H}\Delta\mathcal{H}}(P, Q) := \sup_{f', f'' \in \mathcal{F}} \left| \mathbb{E}_{x \sim Q}[\mathbf{I}[f'(x) \neq f''(x)]] - \mathbb{E}_{x \sim P}[\mathbf{I}[f'(x) \neq f''(x)\right] dHΔH(P,Q):=supf,f′′FExQ[I[f(x)=f′′(x)]]ExP[I[f(x)=f′′(x)]

其中,F是假设空间,PQ分别代表源域和目标域的数据分布,I[⋅]是指示函数(当条件为真时取值为1,否则为0),f′(x)和f′′(x)是假设空间中的任意两个假设函数,用于对样本x进行预测。

解释

  • 不一致性测量:HΔH-distance通过测量两个假设函数在源域和目标域上预测不一致的样本比例之差来量化域之间的差异。这种不一致性反映了源域和目标域在数据分布上的本质差异。
  • 假设空间:假设空间F的选择对HΔH-distance的计算至关重要。不同的假设空间可能导致不同的距离度量结果。
  • 上确界:通过取所有可能假设函数对(f′,f′′)上的不一致性差异的最大值,HΔH-distance提供了一个紧致的界来量化域之间的差异。

应用
在迁移学习中,HΔH-distance可以用于评估不同域适应算法的效果。较小的HΔH-distance通常意味着源域和目标域之间的差异较小,因此更容易实现域适应。此外,HΔH-distance还可以作为优化目标,指导设计更有效的域适应算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值