07机器学习

无监督学习

将无标签数据输入到算法中,让算法找到隐含在数据中的结构

1.K均值算法

该算法为迭代算法,做两件事,进行簇分类和移动聚类中心

簇分类,遍历原始数据,确定每个数据分配给聚类中心

之前

 之后

 然后移动聚类中心,计算所有红点的均值,并将聚类中心移到那里,蓝点同理

 然后重新分配

然后不断重复这两步,直到聚类中心不在变化,点的颜色不在变化,可以结束了

 

K均值算法可以用于分离不佳的簇

损失函数/失真代价函数

 由于初始的聚类中心是随机选择的,最后结果为局部最优,为了达到全局最优,可以多初始化几次

 K值选择

方法一

方法二

2.降维 

 主成分分析问题PCA

找到一个低维平面,然后将数据投影在上面,使蓝色线段平方值最小,蓝色线段又叫投影误差

怎么降维?

1.先对数据进行预处理

2.计算协方差矩阵

3.计算该矩阵特征向量

 

 对于目标维度k的选择

 更高效的办法

异常检测

该检测算法具体步骤

 

推荐系统

 基于内容

协同过滤算法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值