"F1_Confidence Curve"通常用于评估目标检测模型在不同置信度阈值下的性能。它是 F1 分数和置信度阈值之间的曲线关系图。在目标检测任务中,通常使用 F1 分数来衡量模型在检测目标时的精确度和召回率的综合表现。将不同的置信度阈值应用于检测结果可以得到一系列的 F1 分数,这些分数构成了 F1_Confidence Curve。这个曲线可以帮助确定在不同置信度水平下模型的性能表现,并且可以帮助选择最佳的置信度阈值,以平衡精确度和召回率。
P_curve"通常指的是 Precision-Recall Curve(精确率-召回率曲线),在目标检测任务中,精确率指的是检测出的目标中真正为目标比例,而召回率(Recall)指的是真正为目标的样本中成功被检测出的比例,P_curve 展示了在不同阈值下模型的精确率和召回率之间的权衡关系。通过观察P_curve,可以评估模型在不同精度和召回率下的表现,并选择适当的阈值来平衡模型的性能。
例如:
1.精确率(Precision):指的是检测出的目标中真正目标的比例,例如,如果模型检测出10个目标,其中8个为真正的目标,那么精确率是80%
2.召回率(Recall):指的是所有真正为目标的样本中被成功检测出的比例。例如,如果有10个真正的目标,模型检测出了7个,那么召回率就是70%。
1.1提高阈值通常会增加精确率(减少误报),但可能会降低召回率(漏报更多真正的目标)
1.2降低阈值则反之,可能会增加召回率,但同时会减少精确率。
所以我们可以通过观察P_curve,可以找到精度,召回都较为满意的阈值点,从而达到模型平衡性能的效果。这个过程有助于根据具体需求调整模型。