mmdetection的3.x版本测试每一类class的map

 首先在mmdet文件夹中的evaluation文件夹中找到metrics文件夹,再找到里面的coco_metric.py文件,修改文件中的classwise:bool = False为True,如下图橙色光标高亮所示

然后使用下面的代码运行来测试,记得修改成自己的py路径和pth,最后的数字1表示使用1个GPU

运行。

./tools/dist_test.sh run_workstation/mask-rcnn_r101_fpn_1x_coco.py run_workstation/epoch_360.pth 1

预测的结果如下图,有每一类的map,我的是4类,分别是0123四个罗马数字表示。Mask—RCNN有两个指标,分别是bbox和segment,代表预测框和分割。

最后解释一下此行代码。tools/dist_test.sh是支持多节点测试,不过需要依赖 PyTorch 的 启动工具 。更多详细内容请了解mmdetection官网上的内容,重点是模型测试部分https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/test.html

mmdetection v2.25.3是一个开源的目标检测工具包,用于进行物体检测任务。根据引用,安装mmdetection v2.25.3需要满足以下条件:torch版本为1.3,并且cuda版本为10.0或者高于10.0的版本。如果使用cuda为9.0的版本,则需要降低torch的版本。具体安装步骤可以参考官方网站提供的说明。首先,可以使用以下命令克隆mmdetection资源库: git clone https://github.com/open-mmlab/mmdetection.git 然后进入mmdetection目录: cd mmdetection 根据引用,如果是手动安装,还需要在mmdetection目录下通过命令下载checkpoint文件: mkdir checkpoints cd checkpoints wget http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth 下载完成后,您就可以开始使用mmdetection v2.25.3进行目标检测任务了。 请注意,根据引用,在进行任何改动之前,建议使用命令"pip install -e ."将mmdetection安装到anaconda3的库中,以确保每次对代码的修改都能生效。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【干货】:配置环境anaconda3并安装最新版mmdetection](https://blog.csdn.net/qq_41375609/article/details/106512843)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [MMDetection的安装及验证](https://blog.csdn.net/qq_46311811/article/details/123767250)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值