首先在mmdet文件夹中的evaluation文件夹中找到metrics文件夹,再找到里面的coco_metric.py文件,修改文件中的classwise:bool = False为True,如下图橙色光标高亮所示
然后使用下面的代码运行来测试,记得修改成自己的py路径和pth,最后的数字1表示使用1个GPU
运行。
./tools/dist_test.sh run_workstation/mask-rcnn_r101_fpn_1x_coco.py run_workstation/epoch_360.pth 1
预测的结果如下图,有每一类的map,我的是4类,分别是0123四个罗马数字表示。Mask—RCNN有两个指标,分别是bbox和segment,代表预测框和分割。
最后解释一下此行代码。tools/dist_test.sh
是支持多节点测试,不过需要依赖 PyTorch 的 启动工具 。更多详细内容请了解mmdetection官网上的内容,重点是模型测试部分https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/test.html