关于大模型学习中遇到的5

来源:网络

相关学习:

多模态是什么意思

多模态(Multimodality)是指同时使用两种或多种感官进行信息交互的方式。这种状态涉及到的感官包括但不限于视觉、听觉、触觉、嗅觉等。在科技领域,多模态技术被广泛应用于多个领域,如智能家居、虚拟现实、自动驾驶汽车以及语音助手等,它旨在为用户提供更加轻松、高效和便捷的生活和工作体验。此外,多模态数据处理需要结合高级认知智能,以实现对复杂信息的准确理解和高性能的人工智能应用。


hugging face相关:

早期的NLP比较简单,完全没有训练学习的能力,只需完成特定领域的任务即可。

现在的NLP可以简单划分成量大派系:(其他的大部分任务都可以套用)

BERT系(填空)(解决常规任务:分类的,关系抽取-知识图谱、命名设计师体验)

GPT系(自回归,一直预测下一个)(对话机器人等)

NLP究竟拼的什么?

网络结构、损失函数,还是各种训练技巧呢?

从目前NLP比较核心的模型来看,主要拼的是数据量和参数量。很多东西不能自己做,因为没有足够的算力(海量的,每个人的风格不一样,分布不一样,你的batch,即同一批处理的数据量能比较低吗?如果batch低的话模型很难去训练,语言不像图像,图像batch2、3.batch10、20可以但语言很难,因为语言的数据量是海量的,而且分布是有些区别的)和数据量(人每天学到的文字很多,但我们从小到大要学会一门语言起码要2-3年,这几年接收的信息量是非常大的,所以对于NLP要学会海量的知识,是需要很多的信息的。

BERT和GPT本质差异不大,在算法层面上,都是用transformer去做的,算法当中,他两是非常类似的,但他们的区别在于GPT的训练参数远大于BERT。

算法都差不多,因此模型更大,训练时间越长就学的更好,因此这个领域发顶刊除非你有算力,否则,我们应该更多的是注重落地应用,用这些模型运用,进行微调(如现在比小时候学喝酸奶,修手机,只是在原基础上进行了微调一样)。我们是做不了语言模型的,但我们能做的是前人给的预选模型去完成我们的任务。

如何开始NLP?

对于落地,传统的算法NLP没有太大意义,现在应该学transformer自注意力机制就足够了,他的变形体中(包括BERT、GPT)我们就学习hugging face(一个集大成者的包)就可以。

hugging face:

集大成者于一身,包括了当下NLP所有核心模型

对我们来说,调用BERT模型,GPT模型及其训练好的权重参数,只需1行代码

微调我们自己的任务,只需处理好咱们的数据,然后继续训练模型即可

即便你对数学一无所知,即便你对代码稀里糊涂,即便你对数据无从下手

(要梯子)hugging face 官网:https://huggingface.co/

hugging face 不仅是一个工具包,更是一个社区,也是NLP大佬们的舞台,越来越多的大佬通过它来开源模型,来宣传论文以及研究成果。它在持续更新,前沿工作着都在用它。

关于它的故事:

据传说,30个兼职的开发与算法工程师就敲动了20亿的市值,其实这离不开开源的力量,AI领域太需要一个舞台和社区,17年谷歌TFLX用的BERT,facebook用pytorch,在很乱的时候,时势造英雄,赶上了Transformer在AI领域爆火,成为第一个吃螃蟹的人,打包。BERT和GPT席卷NLP,huggingface坐收渔利,社区驱动技术进步。

一举两得,分而治之:

AI离不开学术上的驱动,也离不开工程化的落地,两者结合在这个社区里边学边用。

搞学术的来为社区提供模型以彰显其在该领域的地位与能力,引用量得以上升;搞项目的通过社区提供的预训练模型完成自己的任务,项目落地效率高。

中国为什么诞生不了huggingface:

一切都是开源的,实现之路很难,不像openai,搞付费API接口

30个兼职初创兴趣爱好走到了一起,国内兴趣不能抵房贷

MMLAB和huggingface很像,但的有商汤的资本维持

huggingface之路不仅于此,接下来要一统江湖(CV等领域)

CV:主要是用MMLAB;NLP主要用huggingface(21年开始火的)

一开始openai算是NLP的龙头老大,可后面做了付费ai,调用接口需要钱

NLP:

分词(tokenizer分词器),做成特征(向量),一般用预训练模型,微调

huggingface 调用就可以,开箱即用,可以在cpu上运营gpu的事情

基本流程:


huggingface的主要模型:

自回归:GPT2、Transformer-XL、XLNet

自编码:BERT、ALBERT、RoBERTa、ELECTRA

StoS:BART、Pegasus、T5


参考:huggingface超详细介绍和使用教程【计算机视觉 | 自然语言处理】Hugging Face 超详细介绍和使用教程_huggingface教程-CSDN博客


Anaconda Prompt打开方式与使用指南

樱花号2023-12-01 15:16北京

Anaconda Prompt是一个强大的命令行工具,它允许用户轻松访问并管理Anaconda环境及Python包。对于数据科学家和Python开发者来说,熟练掌握Anaconda Prompt的使用是非常重要的。

一、打开Anaconda Prompt的方法

  1. Windows操作系统:

  • 方法一:按下"win + r"键,输入"anaconda prompt"并按下回车键。

  • 方法二:在开始菜单中找到"Anaconda"文件夹,然后选择"Anaconda Prompt"应用程序。

  • Mac或Linux操作系统:

  • 打开终端窗口,输入"anaconda-navigator"命令打开Anaconda Navigator,或者在搜索栏中输入“Anaconda”,然后点击“Anaconda Prompt”。

二、产品参数

  1. 跨平台支持: Anaconda Prompt可以在Windows、Mac和Linux操作系统上使用,为不同平台的用户提供一致的使用体验。

  2. 环境管理: 通过Anaconda Prompt,用户可以轻松创建、激活和删除不同的Python环境,以满足不同项目的需求。

  3. 包管理: Anaconda Prompt提供了强大的包管理功能,用户可以轻松地安装、更新和卸载Python包。

  4. 命令行工具: Anaconda Prompt集成了许多常用的命令行工具,如pip、conda等,方便用户进行各种操作。

  5. 集成Jupyter Notebook: 在Anaconda Prompt中,用户可以方便地启动Jupyter Notebook,进行交互式编程和数据分析。

三、产品优势

  1. 易用性: Anaconda Prompt具有直观的用户界面和丰富的命令行功能,使得用户可以轻松上手并高效地进行操作。

  2. 灵活性: Anaconda Prompt支持多种操作系统和平台,并且可以轻松管理多个Python环境,满足不同项目的需求。

  3. 强大的包管理: 通过Anaconda Prompt,用户可以方便地安装和管理Python包,提高开发效率。

  4. 集成Jupyter Notebook: Anaconda Prompt集成了Jupyter Notebook,使得用户可以方便地进行交互式编程和数据分析。

  5. 社区支持: Anaconda拥有庞大的用户社区和丰富的资源,用户可以方便地获取帮助和支持。

四、产品劣势

  1. 学习曲线: 对于初学者来说,Anaconda Prompt的命令行界面和操作方法可能需要一些时间来适应和学习。

  2. 依赖问题: 在某些情况下,包的依赖关系可能导致安装或更新过程中的问题,需要用户具备一定的解决问题的能力。

五、常见问题与解决方案

  1. Anaconda Prompt无法启动:

  • 解决方案:检查Anaconda是否正确安装,并尝试重新安装或修复安装。

  • 无法创建新的环境:

  • 解决方案:确保Anaconda Prompt以管理员权限运行,或者检查是否有足够的磁盘空间。

  • 包安装失败:

  • 解决方案:检查网络连接,或者尝试清除conda缓存(使用conda clean命令)后重新安装。

  • Jupyter Notebook无法启动:

  • 解决方案:确保Jupyter Notebook已正确安装,并尝试在Anaconda Prompt中使用jupyter notebook命令启动。

六、使用技巧与注意事项

  1. 使用虚拟环境: 为了避免不同项目之间的依赖冲突,建议使用独立的虚拟环境来管理每个项目的依赖。

  2. 定期更新: 为了保持软件的最新功能和安全性,建议定期更新Anaconda及其相关包。

  3. 备份数据: 在进行操作前,建议备份重要数据,以防止意外丢失。

  4. 查阅文档: 遇到问题时,可以查阅Anaconda的官方文档或社区论坛获取帮助。

  5. 谨慎操作: 在执行可能影响系统或数据的命令时,务必谨慎操作,并确保了解该命令的作用。


anaconda安装pip教程

周文涛      2023-11-09 10:14:26      来源:优草派

Python是一种广泛使用的编程语言,而pip则是Python的一个包管理工具,方便我们安装、升级和卸载Python的第三方库。而anaconda则是一个Python和R语言的开源发行版,它集成了许多科学计算和数据分析所需的库,是数据科学家和机器学习爱好者的首选。

anaconda虽然自带了很多库,但是有时候我们还需要安装其他的第三方库,这时就需要用到pip了。下面就让我们一起来学习如何安装pip。

anaconda安装pip教程

一、安装anaconda

首先,我们需要安装anaconda。anaconda的官网提供了多个版本的下载,选择适合自己操作系统的版本进行下载并安装。安装好后,打开anaconda prompt(Windows下)或终端(Mac或Linux下)。

二、检查是否已经安装pip

在anaconda prompt或终端中输入以下命令:

```

pip list

```

如果输出的结果中有多个库的名称,则说明pip已经安装好了。

三、更新pip

如果你已经安装了pip,那么可以通过以下命令来更新pip:

```

pip install --upgrade pip

```

四、安装pip

如果你的anaconda中没有安装pip,那么可以通过以下命令来安装pip:

```

conda install pip

```

五、安装第三方库

安装好pip后,我们可以通过以下命令来安装第三方库:

```

pip install 库名

```

其中,库名是需要安装的库的名称。

六、卸载第三方库

如果需要卸载某个库,可以通过以下命令来卸载:

```

pip uninstall 库名

```

其中,库名是需要卸载的库的名称。

七、总结

通过以上步骤,我们就成功地安装了pip,并学会了如何使用pip来安装、升级和卸载第三方库。使用pip可以方便地管理Python的库,让我们的编程工作更加高效。


实用SQL入门|基础操作 - 知乎


https://wenku.baidu.com/view/781ff8f5de88d0d233d4b14e852458fb760b3807.html?_wkts_=1706595414104&bdQuery=产品运营交付中台工作内容


mac终端安装huggingface https://huggingface.co/docs/transformers/installation#offline-mode

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值