1、OTB(Online Object Tracking Benckmark),它是一个经典的目标跟踪数据集,包含了100个视频序列,涵盖了各种场景和挑战性的情况,有很多个评价指标,比如:APE、AOR。
APE(Average Pix111 el Error):平均像素误差,用来判断两个矩形框(预测框和真实框)的靠近程度(也就是框中心位置像素距离),值越大,说明误差越大;
AOR(Average Overlap Rate):平均重叠率,两个矩形框(预测框和真实框)交集面积与并集面积之比取帧平均,用来判断两个矩形框的重叠程度,值越大则重叠的越多,说明跟踪精度较高。
2、GOT-10K是一个通用的目标跟踪数据集,包含了10000个视频序列,覆盖了多种目标类别和场景,主要的评价指标有AO、SR。
AO:平均重叠率,表示所有基本事实和估计边界框之间重叠的平均值;
SR:成功率,测量的是重叠超过阈值(例如,0.5)的成功跟踪帧的百分比。
3、VOT是一个针对视觉目标跟踪的挑战性数据集,包含了多个视频序列,并提供了丰富的挑战性标注,如目标尺度变化、遮挡、快速运动等,主要的评价指标有A、R、EAO、EFO。
准确率Accuracy:在单个测试序列下的平均重叠率(即AOR),只考虑跟踪成功的帧;
鲁棒性Robu