【conda基础】虚拟环境及常用conda命令

@[toc]【conda基础】conda创建虚拟环境及常用conda命令

虚拟环境

虚拟环境的定义

虚拟环境是一个独立的 Python 运行环境,它包含特定版本的 Python 解释器及其相关的库和依赖项。虚拟环境与系统的全局 Python 环境隔离,允许你在同一台机器上为不同的项目创建和管理不同的依赖环境。

虚拟环境优点

使用虚拟环境的主要目的是解决项目之间的依赖冲突和环境隔离问题

优点

1. 依赖隔离

不同的项目可能需要不同版本的 Python 或第三方库。虚拟环境可以为每个项目创建独立的环境,避免全局环境的污染。

例如,项目 A 需要 numpy == 1.18.5,而项目 B 需要 numpy==1.20.0。通过虚拟环境,可以在同一台机器上同时满足这两个项目的需求。

2. 避免版本冲突

在全局环境中安装或更新库时,可能会破坏其他项目的依赖关系。虚拟环境可以确保每个项目的依赖独立且稳定。

例如,全局环境中安装了 pandas == 1.0.0,但新项目需要 pandas==2.0.0。使用虚拟环境可以避免版本冲突。

3. 便于协作

通过虚拟环境,可以生成一个包含项目依赖列表的文件(如 requirements.txt 或 environment.yml),其他人可以轻松地复现相同的环境。

例如,使用 conda env export > environment.yml 导出环境配置,其他人可以通过 conda env create -f environment.yml 快速创建相同的环境。

4. 测试和开发

在开发过程中,可能需要测试不同版本的库或 Python 解释器。虚拟环境可以快速创建和切换环境,方便测试。

例如,测试 Python 3.7 和 Python 3.8 的兼容性时,可以分别创建两个虚拟环境。

5. 系统环境的保护

虚拟环境可以防止误操作对系统全局 Python 环境造成破坏。例如,安装或卸载库时不会影响系统环境。

6. 多项目支持

如果你同时开发多个项目,每个项目可能需要不同的依赖。虚拟环境可以为每个项目创建独立的环境,避免相互干扰。

虚拟环境的实现工具

常见的虚拟环境管理工具有:

**Conda:**适用于数据科学和机器学习项目,支持 Python 和非 Python 依赖。

venv(Python 内置):Python 3.3 及以上版本自带,轻量级

virtualenv:Python 2 和 3 通用的第三方工具,功能比 venv 更强大。

常用conda命令

本文主要介绍一些conda基础知识,方便用于日常查看使用

1. 创建虚拟环境

conda create --name myenv

myenv 是虚拟环境的名称,可自定义。
也可指定 Python 版本:

conda create --name myenv python=3.8

安装特定包:

conda create --name myenv python=3.8 numpy pandas

其中 numpy pandas 是数据处理的包

2. 激活虚拟环境

conda activate myenv

有时在linux系统中需要使用:

source activate myenv

3. 退出虚拟环境

conda deactivate myenv

4. 查看所有虚拟环境

conda env list

5. 删除虚拟环境

conda remove --name myenv --all

6. 安装包

install 后加包的名称 也可进行指定包的版本

conda install numpy # install 后加包的名称 也可进行指定包的版本

7. 更新包

conda update numpy

更新所有的包

conda update --all

8. 删除包

使用removel进行删除包

conda remove numpy

9. 查看已安装包

conda list

10. 导出环境配置

conda env export > environment.ym

11. 从文件创建环境

conda env create -f environment.yml

12. 清理缓存

conda clean --all

总结

虚拟环境的主要作用是隔离项目依赖,避免版本冲突,保护系统环境,并便于协作和测试。使用虚拟环境是 Python 开发中的最佳实践,能够显著提高开发效率和项目的可维护性。

创建环境: conda create --name myenv

激活环境: conda activate myenv

退出环境: conda deactivate

查看环境: conda env list

删除环境: conda remove --name myenv --all

安装包: conda install numpy

更新包: conda update numpy

删除包: conda remove numpy

导出环境: conda env export > environment.yml

导入环境: conda env create -f environment.yml

清理缓存: conda clean --all

### 如何在 Conda 虚拟环境中安装常用的数据科学和机器学习库 为了确保数据科学和机器学习项目的顺利运行,在创建好的 conda 虚拟环境中安装必要的库是非常重要的。以下是具体的操作方法: #### 创建并激活新的虚拟环境 建议每次启动新项目时都创建一个新的虚拟环境,这有助于隔离各个项目的依赖关系。 ```bash conda create --name my_ml_env python=3.9 conda activate my_ml_env ``` #### 安装基础库 对于大多数数据科学和机器学习任务来说,NumPy、Pandas 和 Matplotlib 是必不可少的基础工具集。 ```bash conda install numpy pandas matplotlib ``` 这些软件包提供了强大的数值计算能力、高效的数据处理功能以及直观的数据可视化手段[^1]。 #### 安装高级分析库 Scikit-learn 提供了许多经典的监督与非监督算法实现;Seaborn 则是在Matplotlib基础上构建的一个更易于使用的统计图形接口。 ```bash conda install scikit-learn seaborn ``` 这两个库能够极大地简化模型训练过程中的特征工程环节,并提供更加美观的数据展示效果[^2]。 #### 安装深度学习框架 (可选) 如果涉及到神经网络相关的研究,则可能还需要引入 TensorFlow 或 PyTorch 这样的深度学习平台。 ```bash conda install tensorflow pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 注意这里选择了 CUDA 版本以支持 GPU 加速运算,可根据实际情况调整版本号[^3]。 通过上述命令可以在 conda 虚拟环境中成功部署一套完整的用于开展数据分析及建模工作的Python生态系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanks66

你的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值