【CVPR2024】Bracketing Image Restoration and Enhancement with High-Low Frequency Decomposition

Bracketing Image Restoration and Enhancement with High-Low Frequency Decomposition


论文信息

题目: Bracketing Image Restoration and Enhancement with High-Low Frequency Decomposition
中文题目:高低频分解在图像恢复与增强中的应用

源码:https://github.com/chengeng0613/HLNet


论文创新点

  • 提出了SCEB,使用SCConv同时考虑空间和通道信息,有效提取不同退化的共同特征。
  • 提出了HLFDB,充分考虑不同退化需要不同高低频信息,有效解决了同时恢复这些退化的挑战。
  • HLNet在指标和视觉质量方面均超越了以往的最先进模型,在括号图像恢复与增强挑战赛的第2赛道中获得第四名。

摘要

在现实场景中,由于一系列图像退化问题,获取高质量、清晰内容的照片颇具挑战。尽管在合成高质量图像方面取得了显著进展,但以往的图像恢复与增强方法往往忽视了不同退化的特性,采用相同结构处理各种退化问题,导致恢复效果不尽如人意。受高低频信息适用于不同退化问题这一理念的启发,我们提出了基于高低频分解的图像恢复与增强方法HLNet。具体而言,我们使用两个模块进行特征提取:共享权重模块和非共享权重模块。在共享权重模块中,我们使用SCConv从不同退化中提取共同特征。在非共享权重模块中,我们引入了高低频分解模块(HLFDB),采用不同方法处理高低频信息,使模型能够更有效地处理不同退化问题。与其他网络相比,我们的方法考虑了不同退化的特性,从而实现了更高质量的图像恢复。


引言

在现实场景中,各种图像退化问题使得捕获高质量、清晰内容的照片变得困难。低曝光可能导致噪声增加,尤其是在暗部区域高低频分解在图像恢复与增强中的应用,可能导致细节丢失。同样,高曝光图像的亮部区域可能因过曝而丢失细节。尽管提出了众多单图像恢复方法,如去噪、去模糊、超分辨率和高动态范围图像重建等,但其性能受限于单图像中的信息不足。
在这里插入图片描述

由于单图像恢复与增强的局限性,如信息不足和曝光时间影响,越来越多的方法利用多帧进行恢复。突发图像恢复方法使用多个连续帧进行超分辨率和去噪,而多曝光HDR成像从不同曝光的LDR图像中重建HDR图像。然而,这些方法仅考虑单一退化场景,忽视了其他退化情况。最近,TMRNet在统一图像恢复与增强任务的框架设计中提出了可行的解决方案。它以多曝光图像为输入,逐步将非参考帧与参考帧混合。尽管他们考虑了不同退化的共性和特性,使用了共享权重模块和非共享权重模块,但在处理不同退化的特性时采用了相同结构,忽视了一些退化的特性。为了解决上述问题,我们提出了HLNet,该模型考虑了各种退化的特性。与TMRNet类似,我们的模型利用共享权重模块和非共享权重模块提取特征。在共享权重模块中,我们引入了空间通道增强模块(SCEB),使用SCConv同时考虑空间和通道信息,有效提取不同退化的共同特征。在非共享权重模块中,不同退化适合用不同频率信息处理例如,去噪和去模糊通常需要增强高频信息以恢复图像细节和纹理,超分辨率需要在恢复低频信息的基础上添加高频细节,而HDR重建需要从不同帧中捕获低频信息。因此,我们提出了高低频分解模块(HLFDB)具体而言,在HLFDB中,高频特征可以捕获详细的局部信息,更适合去噪和去模糊增强。因此,我们通过多个卷积块提取局部特征图,并通过密集连接机制增强多帧中的高频细节低频特征可以捕获图像中的大部分结构信息和全局特征,更适合超分辨率和多曝光HDR重建任务。因此,我们采用多级通道自注意力学习长距离依赖关系,并利用基于小波变换的尺度特征融合方法,避免因下采样导致的结构信息丢失。因此,我们的模型在图像恢复与增强时充分考虑了不同退化的特性,使其在统一图像恢复与增强任务中表现更佳。


2. 相关工作

2.1 突发图像恢复

突发图像指在短时间内连续快速捕获的一系列图像。这些图像中可能存在轻微变化,如相机移动、物体运动或光照条件变化。突发图像恢复通常涉及几个主要类别:去噪、去模糊和超分辨率。许多去噪方法在文献中得到了广泛研究。某些方法采用递归全卷积深度神经网络,而其他方法则选择空间变化核估计。值得注意的是,某些方法还利用偏移估计来应对大量物体运动的挑战。另一些方法探索了突发图像超分辨率的潜力,Both和均采用变换器架构,但省略了像素级对齐,转而采用基于结构几何的简单单应性对齐。中心概念围绕生成一系列伪突发特征,无缝融合所有输入突发帧的互补信息,以实现有效信息交换。

2.2 多帧HDR恢复

多帧HDR恢复涉及从多个低动态范围(LDR)帧创建高动态范围(HDR)图像。在经典的HDR恢复方法中,Debevec等人首次提出了将多个LDR图像合并为单个HDR图像的想法。随后,许多方法采用各种方式将其他帧对齐到参考帧,包括光流、能量优化、秩最小化等。Zhang和Cham利用图像梯度重新校准运动区域权重。Bogoni计算流矢量用于对齐目的。Sen等人采用基于patch的能量最小化方法,优化后续对齐和重建。然而,当前景物体运动显著或过曝/欠曝区域像素丢失过多时,这些方法表现不佳。随着深度学习的发展,深度方法也被应用于多帧HDR融合领域。An等人提出了一种注意力引导的图像融合方法,减少了鬼影伪影的存在。SCTNet利用空间注意力和通道注意力模块,旨在同时利用动态和静态上下文信息,以更好地生成图像。然而,这些方法只能处理单个退化图像。


方法

3.1 HLNet概述

在这里插入图片描述

在本研究中,受多曝光图像的协同潜力和高低频信息适用于不同退化的启发,我们提出了一种通过高低频分解进行图像合成和增强的方法。目标是实现清晰、高动态范围和高分辨率的图像。具体而言,我们的输入由五个不同曝光的原始图像组成,记为{R1, R2, R3, R4, R5}。首先,我们将多个曝光图像的数量输入为5,并将曝光时间为∆ti的原始图像标记为Yi,其中i ∈ {1, 2, …, 5}且∆ti < ∆ti+1。随后,遵循多曝光HDR重建方法的指导方针,我们通过拼接将伽马变换后的图像Yr与原始图像Yi合并,结果为Fi,其中i ∈ {1, 2, …, 5}。该过程可表示为:
Y i = ( R i Δ t i / Δ t 1 ) , Y r = ( R i Δ t i / Δ t 1 ) γ , Yi = \left( \frac{Ri}{\Delta ti/\Delta t1} \right), \quad Yr = \left( \frac{Ri}{\Delta ti/\Delta t1} \right)^\gamma, Yi=(Δtit1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanks66

你的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值