嵌入式与AI(机器学习)

基于TensorFlow Lite软件框架,使得在物联网IoT、嵌入式、单片机上运行机器学习模型,实现边缘AI部署

本文简介

本文总结归纳于 Pete WardenDaniel Situnayake 的作品《TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers
在原著的基础上加入了本人的一些思考,同时对某些代码进行更深入地解释,使得不论是嵌入式小白还是AI算法小白都能体验二者融合的魅力
本文将逐步更新,同时如有错误请联系我进行讨论修改,如有侵权请立即联系

在边缘部署AI的意义

介绍边缘

首先介绍边缘:边缘计算是一种分布式计算范式,它将计算任务和应用程序从中心化的数据中心推向网络的边缘,即靠近数据源或用户设备的地方。在边缘计算中,边设备或边缘节点负责处理和分析来自端设备的数据,以减轻中心服务器的负担,降低网络延迟,提高响应速度。边缘计算广泛应用于物联网、智能制造、智能交通等领域。本文所涉及的边缘计算指的是在单片机上计算模型和数据处理。
为了便于初学者理解,建议直接把“边缘”理解为数据采集端,即一些获取传感器数据的单片机

生活与数据

在人工智能和大数据技术蓬勃发展的今天,无数的数据在我们身边产生,他们来自于对环境进行采样的传感器,来自于摄像头捕捉的张张图像,与手机助手对话产生的音频······他们通过网络传输到某台服务器上,这些大量的、无时无刻不在获取的数据作为各种模型的学习数据,构建出多种多样的大模型,天气预测、图像识

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值