线性代数-矩阵的运算

2.2 矩阵运算(一)

一、矩阵的加减法

基本定义

对应位置元素相加减,必须是同形型

\begin{bmatrix} \mathbf{a_{11}}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\end{bmatrix}+\begin{bmatrix} \mathbf{b_{11}}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\end{bmatrix}=\begin{bmatrix} \mathbf{a_{11}+b_{11}}&a_{12}+b_{12}&a_{13}+b_{13}\\ a_{21}+b_{21}&a_{22}+b_{22}&a_{23}+b_{23}\end{bmatrix}

\begin{bmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\end{bmatrix}-\begin{bmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\end{bmatrix}=\begin{bmatrix} a_{11}-b_{11}&a_{12}-b_{12}&a_{13}-b_{13}\\ a_{21}-b_{21}&a_{22}-b_{22}&a_{23}-b_{23}\end{bmatrix}

运算律

A+B=B+A
(A+B)+C=A+(B+C)
A+0=A
A-0=A

A+B=C \Leftrightarrow A=C-B__________________________________________________________________

二、数乘

基本定义

k \times \begin{bmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\end{bmatrix}= \begin{bmatrix} k \times a_{11}&k \times a_{12}&k \times a_{13}\\ k \times a_{21}&k \times a_{22}&k \times a_{23}\end{bmatrix}

矩阵公因子:所有元素都有的公因子,公因子朝外提1次

运算律
k(A+B)=kA+kB
(k+l)A=kA+lA
k(lA)=(kl)A

___________________________________________________________________

三、矩阵相乘

基本定义

A=\begin{bmatrix} A&B&C\\ D&E&F \end{bmatrix}        B=\begin {bmatrix} H&I&J\\ K&L&M \\ N&O&P \end{bmatrix}

A \times B =\begin{bmatrix} A \times H+B \times K+C\times N&A \times I+B \times L+C\times O&...\\ D \times H+E \times K+F\times N&D \times I+E \times L+F\times O&...\end{bmatrix}

相乘的前提:中间相等取两边

概念1:如果A \times B = B\times A即A、B是可以交换的,可交换的矩阵必须是方阵

概念2A \times B中,A叫左乘B,B叫右乘A,矩阵乘法中严格区分左右乘

概念3:任何矩阵左乘零矩阵结果都是0矩阵,注意形状

A_{4 \times 3} \times 0_{3 \times 2}=0_{4 \times 2}

概念4:任何矩阵与单位阵相乘,都是结果不变,A \times E=A

\begin {bmatrix} 1&0&1\\ 0&1&1 \\0&1&1 \end{bmatrix} \times \begin {bmatrix} 1&0&0\\ 0&1&0 \\0&0&1 \end{bmatrix}=\begin {bmatrix} 1&0&1\\ 0&1&1 \\0&1&1 \end{bmatrix}

不满足规律1:AB=0无法推导出A=0或B=0

不满足规律2:AB=AC且A≠0时,是无法推导出B=C

不满足规律3A \times B \neq B\times A,AB有意义的时候,BA不一定有意义

A=\begin{bmatrix} 2&0\\ -1&0 \end{bmatrix}          B=\begin {bmatrix} 0&0\\ 1&3 \end{bmatrix}          C=\begin{bmatrix} 0&0\\ 2&4 \end{bmatrix}

                                \downarrow

AB=\begin{bmatrix} 0&0\\ 0&0 \end{bmatrix}        AC=\begin{bmatrix} 0&0\\ 0&0 \end{bmatrix}

运算规律

矩阵的左右顺序不会变
(AB)C=A(BC)
(A+B)C=AC+BC
k(AB)=(kA)B=A(kB)

展开式

1、

\begin{cases} x_1=y_1-y_2&\\ x_2=y_1+y_2& \end{cases}

               \downarrow

\begin {bmatrix} x_1\\ x_2 \end{bmatrix} = \begin {bmatrix} 1&-1\\ 1&1 \end{bmatrix}\times\begin {bmatrix} y_1\\ y_2 \end{bmatrix}

2、

\begin{cases} y_1=z_1+z_2+2z_3&\\ y_2=z_1-2z_2+z_3& \end{cases}

                \downarrow

\begin {bmatrix} y_1\\ y_2 \end{bmatrix} = \begin {bmatrix} 1&1&2\\ 1&-2&1 \end{bmatrix}\times\begin {bmatrix} z_1\\ z_2\\ z_2 \end{bmatrix}

___________________________________________________________________

2.2 矩阵运算(二)

三、矩阵的幂

基本定义

A^k=A\cdot A \cdot A.....A

A^0=E

运算律(当A为方阵时候):

A^{K_1} \cdot A^{K_2}=A^{K_1+K_2}

A^{K_1+K_2}=A^{K_1} \cdot A^{K_2}

(A^{K_1})^{K_2}=A^{K_1 \cdot K_2}

(A+B)^K\neq A^K \cdot B^K

(A+B)^K\neq A^2+2AB+ B^2

(A-B)^K\neq A^2-2AB+ B^2

(A+E)^K=A^2+2AE+ B^2

(A-E)^K=A^2-2AE+ B^2

___________________________________________________________________

四、转置

基本定义

矩阵的转置写成A^T,转置后形状变化

A\rightarrow A^T

\begin {bmatrix} 1&0&1\\ 0&1&1 \end{bmatrix}\rightarrow \begin {bmatrix} 1&0\\ 0&1\\ 1&1\end{bmatrix}

A_{2 \times 3}\rightarrow (A^T)_{3 \times 2}

运算律

(A^T)^T=A

(A+B)^T=A^T+B^T

(kB)^T=kA^T

(AB)^T=B^TA^T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值