阅读论文Imagenet Classification with Deep Convolutional Neural Networks——即对AlexNet的理解

简介:AlexNet神经网络具有 6000 万个参数和 650000 个神经元,由五个卷积层组成,其中一些卷积层后跟最大池化层,以及三个完全连接层,最终具有 1000 路 softmax。为了更快地进行训练,使用了非饱和神经元和非常高效的 GPU 卷积运算实现。为了减少全连接层中的过拟合,还采用了 “dropout” 的正则化方法。

1.AlexNet的网络结构介绍

AlexNet由5个卷积层,3个池化层,3个全连接层构成。前5个全是卷积层,后3个是全连接层,并且在第一与第二卷积层,第二与第三卷积层以及最后一个卷积层与第一个全连接层之间有最大池化层。具体的网络结构如图所示:
AlexNet网络结构图
从上图看,在网络设计上其实并非如上图所示,上图包含了GPU通信的部分。这是由当时GPU内存的限制引起的,作者使用两块GPU进行计算,因此分为了上下两部分。但是,以目前GPU的处理能力,单GPU足够了,因此其结构图可以如下所示:
AlexNet网络结构图
1.1 第一次卷积到C1层
由上图可以看到,在第一次卷积时输入的图像像素为3×224×224,96个11×11的卷积核,不扩充边缘padding = 0,步长stride = 4,在这里要注意的是原图输入224 × 224,实际上进行了随机裁剪,实际大小为227 × 227。所以根据pytorch官方的Conv2d函数的计算公式,如图:
在这里插入图片描述
所以,可以得到经过第一次卷积后所得到的图像H=(227-10-1)/4+1=55,W=(227-10-1)4+1=55,通道为96,即96×5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值