梯度(gradient)、散度(divergence)与旋度(rotation)

(一)梯度

梯度的定义为:

grad\ f(x_1,x_2...x_n)=\frac{\partial f}{x_1}|_{p_0} \ i +\frac{\partial f}{x_2}|_{p_0} \ j+...+\frac{\partial f}{x_n}|_{p_0} \ k\\=(\frac{\partial f}{x_1}|_{p_0},\frac{\partial f}{x_2}|_{p0},...,\frac{\partial f}{x_n}|_{p_0})

其中f为自变量为x1,x2,...,xn的n元标量函数,i,j,...,k为各个方向的单位向量。p0表示向量函数中定义域某一点p0,最终结果表示该标量函数在p0点的梯度,为一个向量。所以一个标量函数的梯度为一个向量函数。

例如,一个二元标量函数f(x,y)=x^2+y^2,那么它的梯度为:grad(f)=(2x,2y)

 

 

一个标量函数梯度方向是该函数在定义域某点处方向导数取得最大值的方向,即该函数在该点处沿着梯度的方向变化最快,变化率最大。

梯度通常用向量微分算子\bigtriangledown表示,\bigtriangledown f即为标量函数f的梯度。

(注:一个标量函数的梯度为向量函数。)

(二)散度

在介绍散度前,需要引入另一知识点——通量(flux)。

通量:通量的概念最初来源于物理学,在流体运动中,通量是单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量。

在数学中,通量定义为向量函数在某个曲面S上的积分。即:

\Phi =\iint_{\Sigma }^{}v(x,y,z).dS=\iint_{\Sigma }^{}v(x,y,z).n^\circ dS

其中v(x,y,z)为向量函数,v(x,y,z)=\{ P(x,y,z),Q(x,y,z),Z(x,y,z)) \}n^\circ表示Σ正侧的单位法向量。这里通量表示了流体流过有向曲面指定侧的流量,具有具体的物理意义,所以向量函数含有三个自变量,向量为三维。

散度的定义为:

div \ v(x,y,z)=\Phi '= lim_{\Omega' \rightarrow M}\frac{\Delta \Phi }{\Delta V}=lim_{\Omega' \rightarrow M}\frac{\iint_{\Sigma }^{}v(x,y,z).n^\circ dS}{\Delta V}

其中v(x,y,z)为定义在空间Ω上的一个向量场,M表示空间中的某一点,Σ是Ω内围绕点M所作的任一闭曲面(以外侧为正侧),该闭曲面所界的空间为Ω',其体积为ΔV,v(x,y,z)穿过该闭曲面的流量为Δφ。散度反映了流速场v在空间中某点M处的“源”或“汇”的强度,若散度大于0,表示该点处有“源”;散度小于0,表示该点有“汇”;若为0,表示无“源”无“汇”。

在空间直角坐标系中,散度可定义为:

div \ v(x,y,z)=\frac{\partial P(x,y,z)}{\partial x}+\frac{\partial Q(x,y,z)}{\partial y}+\frac{\partial R(x,y,z)}{\partial z}

利用该公式即可计算直角坐标系中向量函数的散度。

(注:一个向量函数的散度为一个标量函数。)

(三)旋度

在介绍旋度前,需要引入另一知识点——环量(circulation)。环量:在流体力学中,环量为流体的速度沿着一条闭曲线的路径积分。在数学中,环量表示为向量函数沿着闭曲线的的积分,即:

\Gamma =\oint_{L}^{}v(x,y,z).ds

环量面密度的定义为:

\frac{d\Gamma }{dS}=lim_{\Delta \Sigma \rightarrow M}\frac{\Delta \Gamma }{\Delta S}=lim_{\Delta \Sigma \rightarrow M}\frac{1}{\Delta S}\oint_{\Delta L}^{}v(x,y,z).ds

其中M为向量场空间中的某一点,在M点处取定一个方向n,ΔΣ为过点M以n为法向量的小曲面,该小区面的边界曲线为ΔL,曲线的正向与n符合右手规则。该式表示向量场在M点处沿n方向的环量面密度。

对于向量场空间中某点的环量面密度,我们可以通过计算发现,其数值大小与方向n有关,这一点与方向导数大小与方向有关有着相似之处,所以在这里我们引入旋度。 

旋度的定义为:

rot \ v(x,y,z)=\{ \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial X}-\frac{\partial P}{\partial y} \} \\ =\bigtriangledown \times v(x,y,z) \\ =\begin{vmatrix}i & j& k \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ P&Q&R\end{}

向量函数v(x,y,z)中某点M的旋度,其方向是环量面密度取最大值的方向,其模为环量面密度的最大值。

(注:一个向量函数的旋度为一个向量函数。)

### 回答1: 旋度梯度是向量场分析中的重要概念和工具。是用来描述向量场的发旋度用来描述向量场中的旋转程,而梯度则是用来描述经过一个标量函数变化最快的方向以及变化速率的大小。 通常用符号div来表示,也被称作“量”或“发”,它表示向量场中的单位体积内的流量的总和。如果一个向量场中的流量在某一点聚集,则该点的为正,反之为负。的计算公式是:div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z。 旋度通常用符号curl来表示,也被称作“环量”或“旋量”,它是一种向量算子,表示一个向量场的旋转程旋度是一个矢量,它的大小和方向向量场中的旋转程有关。旋度的计算公式是:curl(F) = ( ∂Fz/∂y - ∂Fy/∂z )i + ( ∂Fx/∂z - ∂Fz/∂x )j + ( ∂Fy/∂x - ∂Fx/∂y )k。 梯度通常用符号grad来表示,也被称作“斜率”或“梯量”,它表示标量函数增加最快的方向和速率。梯度的大小和方向函数的变化率有关。梯度的计算公式是:grad(f) = ∂f/∂x i + ∂f/∂y j + ∂f/∂z k。 如果想深入理解旋度梯度这三个概念,可以寻找相关的教材或网络资源,或者下载相应的图解版pdf进行学习和参考。 ### 回答2: 旋度梯度是向量计算中的三个重要概念,它们在物理学和工程学中具有广泛的应用。描述了一个向量场在一个点的流入和流出情况,旋度则描述了一个向量场在一个点的旋转性质,而梯度则是描述一个标量场的变化率最大的方向和大小。 的图示意图是指在一个点上考虑一个向量场,然后计算这个点内部所有小区域的流出和流入情况,最终得到一个标量值。当这个标量值为正时,表示该点上的向量场存在流出状态;当这个标量值为负时,则表示该点上的向量场处于流入状态。 旋度则是考虑一个向量场在一个点的旋转性质,通过对向量场旋转角和流线上的弧长进行积分,最终得到一个标量值。当这个标量值为正时,表示该点上的向量场存在逆时针旋转状态;当这个标量值为负时,则表示该点上的向量场存在顺时针旋转状态。 最后,梯度是指在一个点上考虑一个标量场,然后计算该点上一定方向上最大的变化率,并且这个变化率的方向和大小就是梯度方向和梯度大小。这个概念可以用来解决很多工程问题,例如流体流动、纹理映射、图像处理等。 旋度梯度释义图解版pdf下载可以帮助我们更加深入地理解这三个概念,对于学习和应用向量计算领域的同学和工程师来说都非常有用。 ### 回答3: 旋度梯度是矢量场中的三种重要概念,其含义不仅在物理学、数学、工程学等领域有广泛应用,也在计算机图形学、机器学习等领域得到了广泛的应用。释义图解版pdf是这三种概念释义的一种文献资源,可以帮助读者更加直观地理解旋度梯度的含义和运用。 是矢量场的一种特征,它描述了矢量场在某一点的流量变化率。可以解释为某一点的“源”或“汇”,使用可以帮助我们分析物质的扩和输运过程,也可以用于流场的分析计算。 旋度是矢量场的另一种特征,它描述了矢量场的旋转性质,即在某一点附近矢量的旋转方向的关系。旋度在物理上可以表示为涡量,它可以帮助我们分析流体的旋转和回流过程。 梯度是矢量场的第三种特征,它描述了矢量场的变化率,可以看作是矢量场中最陡峭的方向。梯度可以用来计算函数的变化率,也可以用来表示场函数的局部最大值、最小值以及它们所在的位置。 通过旋度梯度释义图解版pdf下载,读者可以看到矢量场中这三种特征的概念定义、公式示例,也可以看到三种特征之间的关系和运用。这种文献资源对于物理学、数学、工程学等领域的研究者和学生,以及计算机图形学、机器学习等领域的从业者都具有很高的参考价值和实用性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小兔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值