【信号处理】卡尔曼滤波(Matlab代码实现)

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法;卡尔曼滤波器主要根据被提取信号的测量值和预测值,通过迭代算法获得被测信号的估计值。由于迭代过程中消减了系统的量测噪声和过程噪声,因此卡尔曼滤波器可以对被测信号的精确估计,适用于解决随机信号与噪声的多维非平稳、时变、功率谱不稳定等问题[ 2]。卡尔曼滤波器包括"“预测"与"校正"两个过程;预测是利用时间更新方程建立对当前状态的先验估计,及时预估当前状态及误差协方差估计值;校正过程是利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计[~]。其具体数学方程如下:

📚2 运行结果

 

 

 

 

 

 

 

 

 

 

 

 

部分代码:

T_total = 20;       %Observation time s
T= 0.5;             %Data rate = 0.1s
N = T_total/T;
t = 0.5:T:T_total;
M = 50;              %Monto-carlo time
%Motion parameters
R0 = 80;  %km
v0 = 0.8; %km/s
v1 = -0.4; %km/s
a0 = 0;
a1 = 0.5; %km/s2
%noise
sigma_x = sqrt(0.1);     %过程噪声 / 状态噪声 的平方,此处为速度波动
sigma_z = sqrt(0.05);    %距离量测噪声的平方,高斯白

%% Kalman filter CV 1-dimension

%-------Kalman Parameters-------%
R = sigma_z^2;
P = [R   R/T     
     R/T 2*R/T^2 ];
F = [1 T 
     0 1];%状态转移矩阵
H = [1 0];%量测矩阵
%用于更新实际轨迹的转移矩阵
F_track = [1 T T^2/2
           0 1 T
           0 0 1];
%过程噪声
B = [T^2/2; T]; %过程噪声分布矩阵
v = sigma_x^2;   %x方向的过程噪声向量//相当于Q
V = B * v * B';
% %观测噪声??
% W = B * noise_x;

%------Data initial-------%
X_real = zeros(3,N);
X = zeros(2,N);
Z = zeros(1,N);
X_filter = zeros(2,N);
bias = zeros(2,N,M);
gain = zeros(2,N,M);
Cov = zeros(2,N,M);
%初始时刻1,x的位置和速度

%-------Track Initial-------%
%flag=1,Track1;flag=2,Track2;flag=3,Track3
flag = 3; 
if flag == 3
    a = a1;
else
    a = a0;
end
X_real(:,1) = [R0, v0, a]'; %x: km,km/s
X(:,1) = X_real(1:2,1);
Z(:,1) = X_real(1,1);
X_filter(:,1) = X_real(1:2,1);


%Monto-carlo

for m=1:M
    
    noise_x = randn(1,N).*sigma_x; %过程噪声
    noise_z = randn(1,N).*sigma_z; %观测噪声
    
    %构造 真实轨迹X 与 观测轨迹Z //flag = 1一次速度改变机动
    for n=2:N
        if flag == 2 && n == 16
            X_real(2,n-1) = v1;
        end
        X_real(:,n) = F_track * X_real(:,n-1);
    end
    X = X_real(1:2,:)+ B * noise_x;
    Z = H * X + noise_z;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]程雪聪,刘福才,黄茹楠.基于卡尔曼滤波和粒子滤波融合的UWB室内定位算法[J].计量学报,2022,43(10):1335-1340.

[2]杨佳彬,荆晶,李超,陈业明.卡尔曼滤波在试车台PLC数采系统中的应用[J].自动化技术与应用,2022,41(10):57-59.DOI:10.20033/j.1003-7241.(2022)10-0057-03.

🌈4 Matlab代码实现

卡尔曼滤波(Kalman Filter)是一种用于估计动态系统的状态序列的方法,尤其在存在噪声和不完全观测数据的环境下。在MATLAB中,使用kalman滤波器进行信号泄漏估计通常用于处理线性动态系统,例如传感器数据或通信信号的跟踪。 以下是一个简单的MATLAB代码示例,用于实现卡尔曼滤波器估计一个可能被噪声污染的泄露信号: ```matlab % 初始化 dt = 0.1; % 时间间隔 A = [1 dt; 0 1]; % 状态转移矩阵 H = [1 0]; % 测量矩阵 Q = 0.1 * eye(2); % 状态噪声协方差 R = 0.5; % 测量噪声方差 P = eye(2) * 10; % 初始状态误差协方差 x = [0; 0]; % 初始状态 K = eye(2); % 初始卡尔曼增益 for t = 1:100 % 假设我们有100个时间步 % 随机生成测量值和系统输入 u = randn(1, 1); y = H*x + sqrt(R) * randn(1, 1); % 测量值 = 真实值 + 高斯噪声 % 卡尔曼滤波更新步骤 x_pred = A*x + u; % 预测状态 K = P*H'/((H*P*H' + R)); % 更新卡尔曼增益 x = x_pred + K*(y - H*x_pred); % 更新状态 P = (eye(2) - K*H)*P; % 更新状态误差协方差 % 在这里你可以存储x作为估计的信号序列 estimate(t) = x(1); end % 查看估计的信号 plot(estimate) xlabel('时间') ylabel('信号估计') % 相关问题-- 1. 在这个例子中,如何调整卡尔曼滤波器的参数以优化泄漏信号估计? 2. 当系统噪声或测量噪声增大时,如何处理? 3. 如果系统的模型不是线性的,该如何修改此MATLAB代码? ``` 注意:实际应用中,你可能需要根据具体的信号类型、噪声模型和系统动态特性来调整上述代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值