【基于捏力的手指肌电图预测和分类】构建一个肌电图识别系统预测和分类不同手指之间的捏取力,并为假肢设计中力量和手指运动的同步控制提供可行的方法研究(Matlab代码实现)

本文探讨了如何使用Python开发肌电图识别系统,预测和分类不同手指间的捏力,以支持假肢设计中的力量同步控制。研究利用表面肌电图数据,通过模式识别技术优化假肢运动的自然度。文中展示了部分Python代码示例和实验数据处理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


💥1 概述

手指肌电图基于捏力的预测和分类 引言 本研究旨在构建一个肌电图识别系统,用于预测和分类不同手指之间的捏力,并为假肢设计中力量和手指运动的同步控制提供可行的方法。

人手的捏取动作是由拇指和其他四根手指完成的,包括来自两根手指或多根手指的运动。手捏力的强度和类别信息可以通过表面肌电图(sEMG)的模式识别来获得。本研究的目的是构建一个肌电图识别系统,以预测和分类不同手指之间的捏取力,并为假肢设计中力量和手指运动的同步控制提供可行的方法。

手指肌电图基于捏力的预测和分类是一项重要的研究课题。我们的研究旨在利用肌电图识别系统,通过分析不同手指之间的捏取力,为假肢设计中力量和手指运动的同步控制提供可行的方法。人手的捏取动作是由拇指和其他四根手指完成的,包括来自两根手指或多根手指的运动。因此,我们希望通过肌电图识别系统,能够准确预测和分类不同手指之间的捏取力的强度和类别信息。

表面肌电图(sEMG)是一种用于监测肌肉活动的非侵入式技术,通过检测肌肉电活动来获取肌肉收缩和放松的信息。利用这些信息,我们可以建立一个肌电图识别系统,通过模式识别来预测和分类不同手指之间的捏取力。这对于假肢设计和手指运动的控制非常重要,可以帮助假肢用户实现更加精准和自然的手指动作。

通过本研究,我们希望能够为假肢设计和手指运动控制领域提供新的方法和技术。我们将通过实验和数据分析,建立一个可靠的肌电图识别系统,为预测和分类不同手指之间的捏取力提供准确的信息。这将为假肢设计和手指运动控制领域带来重大的进展,为假肢用户提供更加舒适和自然的使用体验。我们相信,通过我们的努力,肌电图识别系统将成为未来假肢设计和手指运动控制的重要技术,为残疾人群体带来更多的帮助和便利。

📚2 运行结果

部分代码:

import csv
import matplotlib
import numpy as np
import operator
from pylab import *
import matplotlib.pyplot as plt
import matplotlib as mpl

def List_Transpose(data):
    data = list(map(list, zip(*data)))    
    return data

def LoadData(datafilename):
    with open(datafilename, 'r') as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        first_name = dataset[0]
        dataset = dataset[1:]
        x_line=size(dataset,0)  
        y_line=size(dataset,1)  
        
        i=0
        while i<x_line:
            j=0
            while j<y_line:
                dataset[i][j]=float(dataset[i][j])
                   
                j=j+1 
            i=i+1            
    csvfile.close()
    
    return first_name, dataset

'''
Show the result of Fig. 7.
'''
def main1():
    first_name, dataset = LoadData('./data/Function1Data/Data.csv')
    feature_normalize = List_Transpose(dataset)
    T_second = np.array(range(len(feature_normalize[0]))) *0.05
    
    figure(1)
    plt.title('CH1')
    feature_value = feature_normalize[0]
    plt.plot(T_second, feature_value, 'r.-', label='MEAN')
    feature_value = feature_normalize[1]
    plt.plot(T_second, feature_value, 'g.-', label='WL')
    feature_value = feature_normalize[2]
    plt.plot(T_second, feature_value, 'b.-', label='MAV')
    feature_value = feature_normalize[3]
    plt.plot(T_second, feature_value, 'm.-', label='RMS')
    feature_value = feature_normalize[4]
    plt.plot(T_second, feature_value, 'c.-', label='Var')
    feature_value = feature_normalize[5]
    plt.plot(T_second, feature_value, 'y.-', label='WAMP')
    feature_value = feature_normalize[6]
    plt.plot(T_second, feature_value, 'k.-', label='MNS1')
    feature_value = feature_normalize[7]
    plt.plot(T_second, feature_value, color='gold', linestyle='-', marker='.', label='MNS2')
    plt.legend(loc='upper right')
    plt.savefig('./results/1.jpg')
    plt.show()

    figure(2)
    plt.title('CH2')
    feature_value = feature_normalize[8]
    plt.plot(T_second, feature_value, 'r.-', label='MEAN')
    feature_value = feature_normalize[9]
    plt.plot(T_second, feature_value, 'g.-', label='WL')
    feature_value = feature_normalize[10]
    plt.plot(T_second, feature_value, 'b.-', label='MAV')
    feature_value = feature_normalize[11]
    plt.plot(T_second, feature_value, 'm.-', label='RMS')
    feature_value = feature_normalize[12]
    plt.plot(T_second, feature_value, 'c.-', label='Var')
    feature_value = feature_normalize[13]
    plt.plot(T_second, feature_value, 'y.-', label='WAMP')
    feature_value = feature_normalize[14]
    plt.plot(T_second, feature_value, 'k.-', label='MNS1')
    feature_value = feature_normalize[15]
    plt.plot(T_second, feature_value, color='gold', linestyle='-', marker='.', label='MNS2')
    plt.legend(loc='upper right')
    plt.savefig('./results/2.jpg')
    plt.show()

    figure(3)
    plt.title('CH3')
    feature_value = feature_normalize[16]
    plt.plot(T_second, feature_value, 'r.-', label='MEAN')
    feature_value = feature_normalize[17]
    plt.plot(T_second, feature_value, 'g.-', label='WL')
    feature_value = feature_normalize[18]
    plt.plot(T_second, feature_value, 'b.-', label='MAV')
    feature_value = feature_normalize[19]
    plt.plot(T_second, feature_value, 'm.-', label='RMS')
    feature_value = feature_normalize[20]
    plt.plot(T_second, feature_value, 'c.-', label='Var')
    feature_value = feature_normalize[21]
    plt.plot(T_second, feature_value, 'y.-', label='WAMP')
    feature_value = feature_normalize[22]
    plt.plot(T_second, feature_value, 'k.-', label='MNS1')
    feature_value = feature_normalize[23]
    plt.plot(T_second, feature_value, color='gold', linestyle='-', marker='.', label='MNS2')
    plt.legend(loc='upper right')    
    plt.savefig('./results/3.jpg')
    plt.show()

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Nardo F D , Morbidoni C , Cucchiarelli A ,et al.Influence of EMG-signal processing and experimental set-up on prediction of gait events by neural network[J].Biomedical Signal Processing and Control, 2021, 63:102232.DOI:10.1016/j.bspc.2020.102232.

[2]游淼.基于肌动图(MMG)与肌电图(EMG)信号的假肢控制系统研究[D].中南大学,2012.DOI:CNKI:CDMD:2.1011.179752.

[3]邹国栋,熊平,武振兴,等.基于语音与肌电融合的多自由度假肢控制系统的研究[J].中华物理医学与康复杂志, 2012.

🌈4 Python代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值