基于BiGRU-Attention的共享单车租赁预测研究(数据可换)(Python代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型构建与原理

三、数据处理与模型训练

四、实验结果与讨论

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiGRU-Attention的共享单车租赁预测研究是一个结合了深度学习技术的复杂应用,旨在提高共享单车租赁数量预测的准确性和鲁棒性。以下是对该研究的详细分析:

一、研究背景与意义

随着共享经济的兴起和环保意识的增强,共享单车作为一种绿色出行方式在全球范围内得到了快速发展。然而,共享单车租赁数量的波动受多种因素影响,如天气、季节、工作日与节假日、地理位置等。传统的预测方法难以有效应对这些复杂因素,因此,利用深度学习技术提高预测精度对于优化资源配置、提升用户体验具有重要意义。

二、模型构建与原理

BiGRU-Attention模型结合了双向门控循环单元(BiGRU)和注意力机制(Attention)的优点,旨在捕捉时间序列数据中的长期依赖关系和重要信息,以提高预测的准确性。

  1. BiGRU
    • BiGRU是一种改进的循环神经网络,它将两个方向的GRU(门控循环单元)结合在一起,能够同时捕捉时间序列的前向和后向依赖关系。这种结构使得模型能够充分利用历史数据和未来数据的信息,提高预测的准确性。
    • 在共享单车租赁数量预测中,BiGRU能够捕捉租赁数量在不同时间段内的变化趋势和周期性规律。
  2. Attention机制
    • 注意力机制是一种能够自动学习不同时间步长对预测结果影响的机制。在共享单车租赁数量预测中,不同时间点的数据对预测结果的贡献程度是不同的。
    • 通过引入注意力机制,模型能够自动分配权重给重要的时间步长,从而更加关注对预测结果影响较大的特征或时间段,进一步提高预测的精度。

三、数据处理与模型训练

  1. 数据收集
    • 收集共享单车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。
  2. 数据预处理
    • 去除异常值、缺失值等,确保数据的完整性和准确性。
    • 根据业务需求和数据特点,提取并转换有用的特征。例如,对于分类特征(如天气状况),可以采用one-hot编码;对于连续特征(如温度、湿度),则进行归一化处理。
  3. 模型训练
    • 将预处理后的数据输入到BiGRU-Attention模型中,进行训练。
    • 在训练过程中,使用均方误差(MSE)或其他合适的损失函数来衡量预测结果与实际值之间的差异。
    • 通过梯度下降法或其变种(如Adam优化器)来优化模型参数,最小化损失函数。
    • 同时,可以采用交叉验证等方法评估模型的性能,并进行参数调优。

四、实验结果与讨论

实验结果表明,基于BiGRU-Attention的共享单车租赁数量预测模型在训练集和测试集上的预测精度通常较高,能够有效地捕捉时间序列中的复杂特征和非线性关系。然而,具体的实验结果会受到数据质量、模型参数设置等因素的影响。

五、结论与展望

基于BiGRU-Attention的共享单车租赁数量预测模型是一种有效的深度学习模型,能够显著提高预测精度。未来研究可以进一步优化模型参数和结构,考虑更多影响因素(如用户行为、地理位置等),以提高模型的预测能力。同时,可以将该模型应用于其他领域的时间序列预测问题中,拓展其应用范围。

综上所述,基于BiGRU-Attention的共享单车租赁预测研究不仅具有理论意义,还具有重要的实际应用价值。

📚2 运行结果

部分代码:

def evaluate_forecasts(Ytest, predicted_data, n_out):
    # 定义一个函数来评估预测的性能。
    mse_dic = []
    rmse_dic = []
    mae_dic = []
    mape_dic = []
    r2_dic = []
    # 初始化存储各个评估指标的字典。
    table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
    for i in range(n_out):
        # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
        actual = [float(row[i]) for row in Ytest]  #一列列提取
        # 从测试集中提取实际值。
        predicted = [float(row[i]) for row in predicted_data]
        # 从预测结果中提取预测值。
        mse = mean_squared_error(actual, predicted)
        # 计算均方误差(MSE)。
        mse_dic.append(mse)
        rmse = sqrt(mean_squared_error(actual, predicted))
        # 计算均方根误差(RMSE)。
        rmse_dic.append(rmse)
        mae = mean_absolute_error(actual, predicted)
        # 计算平均绝对误差(MAE)。
        mae_dic.append(mae)
        MApe = mape(actual, predicted)
        # 计算平均绝对百分比误差(MAPE)。
        mape_dic.append(MApe)
        r2 = r2_score(actual, predicted)
        # 计算R平方值(R2)。
        r2_dic.append(r2)
        if n_out == 1:
            strr = '预测结果指标:'
        else:
            strr = '第'+ str(i + 1)+'步预测结果指标:'
        table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.

[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.

[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.

[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值