假设在贝叶斯模型中,为一组观测数据,为一组隐变量(参数),给出先验,计算后验,根据贝叶斯公式,有:
但是在实际应用中,可能由于积分没有闭式解,或者是指数级的计算复杂度等原因,导致计算上面公式中的积分往往是不可行的。
变分推断就是用来解决这个问题的。
既然无法直接求得后验概率密度p(z∣x),那我们可以寻找一个简单的分布q*(z)来近似后验概率密度p(z|x),这就是变分推断的思想。借此,我们将推断问题转换为一个泛函优化问题。
KL = -ELBO + log p(x)
假设在贝叶斯模型中,为一组观测数据,为一组隐变量(参数),给出先验,计算后验,根据贝叶斯公式,有:
但是在实际应用中,可能由于积分没有闭式解,或者是指数级的计算复杂度等原因,导致计算上面公式中的积分往往是不可行的。
变分推断就是用来解决这个问题的。
既然无法直接求得后验概率密度p(z∣x),那我们可以寻找一个简单的分布q*(z)来近似后验概率密度p(z|x),这就是变分推断的思想。借此,我们将推断问题转换为一个泛函优化问题。
KL = -ELBO + log p(x)