A course in Game Theory学习笔记(二)

2 Nash Equilibrium

2.1 Strategic Games

2.1.1 Definition

A strategic game is a model of interactive decision-making in which each decision-maker chooses his plan of action once and for all, and these choices are made simultaneously.

Outcome:We refer to an action profile a = (aj )j∈N as an outcome, and denote the set ×j∈N Aj of outcomes by A

Finite game:If the set Ai of actions of every player i is finite then the game is finite

Payoff function(utility function):represent the preference relation of player i;ui : A → R.We refer to values of such a function as payoffs (or utilities)

2.1.2 Comments on Interpretation

There are two interpretations(see section 1.5)

Chapter1 Introductionicon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/138718936

a.The deductive interpretation:

A common interpretation of a strategic game is that it is a model of an event that occurs only once; each player knows the details of the game and the fact that all the players are “rational” (see section 1.4), and the players choose their actions simultaneously and independently

There is no information (except the primitives of the model) on which a player can base his expectation of the other players’ behavior

b.The steady state interpretation

a player can form his expectation of the other players’ behavior on the basis of information about the way that the game or a similar game was played in the past . A sequence of plays of the game can be modeled by a strategic game only if there are no strategic links(an individual who plays the game many times must be concerned only with his instantaneous payoff and ignore the effects of his current action on the other players’ future behavior) between the plays

“simultaneous”:no player being informed of the choice of any other player prior to making his own decision

2.2 Nash Equilibrium

This notion captures a steady state of the play of a strategic game in which each player holds the correct expectation about the other players’ behavior and acts rationally.

Briefly, no player can profitably deviate, given the actions of the other players.

best-response function

For any a−i ∈ A−i define Bi(a−i) to be the set of player i’s best actions given a−i :

The alternative formulation of the definition of Nash Equilibrium

2.3 Examples

Examples: see P15

a.Bach or Stravinsky? (BoS)

b.A coordination game

c.The Prisoner’s Dilemma

d.Hawk–Dove

e.Matching Pennies

Excercise: Excercise of Chapter2

2.4 Existence of a Nash Equilibrium

The necessity of four conditions:

Excercise of Chapter 2

quasi-concave:

2.5 Strictly Competitive Games

A strictly competitive game is sometimes called zerosum.

We say that player i maxminimizes if he chooses an action that is best for him on the assumption that whatever he does, player j will choose her action to hurt him as much as possible.

proof:min (-f(z)) = - max f(z),u1= -u2

a.(x *, y *) is a Nash equilibrium:

u1(x *, y *)≥ u1(x , y* ) for all x ∈ A1     u2(x *, y *)≥ u2(x *, y ) for all y ∈ A2

and u1(x,y)=-u2(x,y) , so u1(x *, y *)≤ u1(x *, y ) for all y ∈ A2

Hence u1(x *, y *)= miny u1(x *, y ) ≤ maxx miny u1(x, y)

u1(x *, y *)≥ u1(x , y* ) for all x ∈ A1 and u1(x , y *)≥ miny u1(x, y) for all x ∈ A1

Hence u1(x *, y *)≥ maxx miny u1(x, y)

So u1(x *, y *)=maxx miny u1(x,y) and x* is a maxminimizer for player 1

Similarly,we could prove that y* is a maxminimizer for player 2

b.u2(x *, y *) = maxy minx u2(x, y) , so u1(x *, y *)=miny maxx u1(x,y)

c.let v ∗ = maxx miny u1(x, y) = miny maxx u1(x, y) then maxy minx u2(x, y) = −v*

We also have we have u1(x *, y *) ≥ v* for all y ∈ A2,u2(x, y*) ≥ −v* for all x ∈ A1

Letting y = y ∗ and x = x ∗ in these two inequalities,we conclude that (x ∗ , y ∗ ) is a Nash equilibrium of G.

2.6 Bayesian Games: Strategic Games with Imperfect Information

2.6.1 Definitions

In brief, in a Nash equilibrium of a Bayesian game each player chooses the best action available to him given the signal that he receives and his belief about the state and the other players’ actions that he deduces from this signal.

2.6.2 Examples

Excercise of Chapter 2

2.6.3 Comments on the Model of a Bayesian Game

The idea that a situation in which the players are unsure about each other’s characteristics(payoff and belief) can be modeled as a Bayesian game, in which the players’ uncertainty is captured by a probability measure over some set of “states”.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值