智能汽车竞赛摄像头处理(4)——摄像头循迹思路讲解

本文介绍了在图像二值化后,通过固定阈值和大津法处理,如何追踪赛道中线和屏幕中线。重点分析了寻找黑白交界点的方法,包括从左到右、从右到左、从中间向两边找等,并推荐使用中间向两边的方式以提高准确性。后续文章将探讨具体实现细节。
摘要由CSDN通过智能技术生成

前言

(1)在上一节中,我们学习了对图像的动态阈值二值化处理,和固定阈值二值化一样将原始图像处理成二值化后的黑白图像,这个二维数组里的元素都是0和255两个值,本质也是是将原来的二维数组进行了二值化处理,只是二值化的阈值由大津法计算后得到。

(2)我们要实现的循迹功能就是对这个二值化后的新二维数组进行利用,那么我们要在这个二维数组中得到什么?我们最后要得到赛道中线和屏幕中线,屏幕固定的中线是显示图像的宽度的一半,而赛道中线要通过处理后得到。所以我们这篇文章主要讲解循迹思路。

(3)我们整个图像处理的步骤如下:

  1. 固定阈值二值化/大津法:灰度图像转为黑白图像
  2. 找边界求赛道中线
  3. 求偏差值(取一行/取多行平均/取多行加权平均)

其中,第一步我们在前面的文章中已经学习过了,这篇文章我们来分析一下循迹思路,为实现第二步做铺垫。

分析

我们要找的赛道中线就是求赛道左右边线的平均值,而求赛道左右边线的平均值这个问题又可以依次转化为以下问题:求赛道左右边线的平均值——>找横向的两个黑白交界线——>找黑白交界点。

化简后,我们只需要寻找一横行的赛道中点和图像固定中点即可,坐标的差值即我们的误差值。 

——>找某一行的黑白跳变点,黑跳白-左边线点,白跳黑-右边线点,两个点的横坐标去平均值即赛道中点。赛道中点与图像固定中点做差得到误差。

——>如何精确准确地找到真正的黑白跳变点

有以下几种处理方式:

(1)从左到右,判断黑白跳变点,找到左右两个黑白交界点。

(2)从右到左,判断黑白跳变点,找到左右两个黑白交界点。

(3)从左到右找黑跳白-左边点,从右往左找白跳黑-右边点。

(4)从中间往两边找。-------相对来说,准确度是最高的。

以上几种处理方式都可行,但是第四种方法相对较好,所以我们下一篇文章来分析如何从中间往两边找赛道边界。

智能竞赛摄像头独轮车循迹的详细原理和代码示例比较复杂,需要涉及到图像处理、机器学习等相关技术。以下是一个简单的摄像头独轮车循迹代码示例,供您参考: ```python import cv2 import numpy as np # 初始化摄像头 cap = cv2.VideoCapture(0) # 设置ROI区域 roi_left = 150 roi_right = 500 roi_top = 200 roi_bottom = 300 # 设置阈值 threshold = 100 while True: # 读取一帧图像 ret, frame = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 提取ROI区域 roi = gray[roi_top:roi_bottom, roi_left:roi_right] # 二值化处理 ret, binary = cv2.threshold(roi, threshold, 255, cv2.THRESH_BINARY) # 去除噪声 kernel = np.ones((3, 3), np.uint8) binary = cv2.erode(binary, kernel, iterations=1) binary = cv2.dilate(binary, kernel, iterations=1) # 计算黑线和白线的位置 row_sum = np.sum(binary, axis=0) left_pos = np.argmax(row_sum[:len(row_sum) // 2]) right_pos = np.argmax(row_sum[len(row_sum) // 2:]) + len(row_sum) // 2 # 计算偏差值 deviation = (left_pos + right_pos - roi_right - roi_left) / 2 # 控制独轮车转向 if deviation > 0: # 左转 print("Turn left") elif deviation < 0: # 右转 print("Turn right") else: # 直行 print("Go straight") # 显示图像 cv2.imshow("frame", frame) cv2.imshow("binary", binary) # 按下q键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() # 关闭所有窗口 cv2.destroyAllWindows() ``` 这段代码通过摄像头获取一帧图像,提取ROI区域并进行二值化处理,然后计算黑线和白线的位置,最后根据偏差值控制独轮车转向。需要注意的是,这只是一个简单的代码示例,实际应用中还需要考虑很多因素,如光照条件、噪声等因素的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦克斯同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值