openmv学习笔记(24电赛笔记)

特征点检测(find_keypoint)

        openmv特征点检测,使用特征点(关键点)用来识别图像中的重要部分,这些特征点可以帮助在不同的图像找到相似的部分,甚至在旋转,缩放,光照的情况下。

        模版匹配这种方式多用于,流水线上特定物体的检测,这种情况可以满足距离固定,不需要移动,如果是移动物体,这种物体大小在摄像头中会随着距离去变化,这种就不适合使用模版匹配算法。

            特征点检测如果是刚开始运行程序,程序会提取最开始的图像作为目标物体特征,这个时候程序会默认匹配目标特征的多种比例大小和特征,不仅仅是保存此时大小角度,openmv的这种模式比模版匹配灵活不少。                                                         

# Hello World Example
# 利用特征点检测特定物体例程。
# 向相机显示一个对象,然后运行该脚本。 一组关键点将被提取一次,然后
# 在以下帧中进行跟踪。 如果您想要一组新的关键点,请重新运行该脚本。
# 注意:请参阅文档以调整find_keypoints和match_keypoints。
import sensor, time, image

# Reset sensor
sensor.reset()

# Sensor settings
sensor.set_framesize(sensor.VGA)
sensor.set_windowing((320, 240))
sensor.set_pixformat(sensor.GRAYSCALE)

sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False)

#画出特征点
def draw_keypoints(img, kpts):
    if kpts:
        print(kpts)
        img.draw_keypoints(kpts)
        img = sensor.snapshot()
        time.sleep_ms(1000)

kpts1 = None
#kpts1保存目标物体的特征,可以从文件导入特征,但是不建议这么做。
#kpts1 = image.load_descriptor("/desc.orb")
#img = sensor.snapshot()
#draw_keypoints(img, kpts1)

clock = time.clock()

while (True):
    clock.tick()
    img = sensor.snapshot()
    if (kpts1 == None):
        #如果是刚开始运行程序,提取最开始的图像作为目标物体特征,kpts1保存目标物体的特征
        #默认会匹配目标特征的多种比例大小,而不仅仅是保存目标特征时的大小,比模版匹配灵活。
        # NOTE: By default find_keypoints returns multi-scale keypoints extracted from an image pyramid.
        kpts1 = img.find_keypoints(max_keypoints=150, threshold=10, scale_factor=1.2)
        #image.find_keypoints(roi=Auto, threshold=20, normalized=False, scale_factor=1.5, max_keypoints=100, corner_detector=CORNER_AGAST)
        #roi表示识别的区域,是一个元组(x,y,w,h),默认与framsesize大小一致。
        #threshold是0~255的一个阈值,用来控制特征点检测的角点数量。用默认的AGAST特征点检测,这个阈值大概是20。用FAST特征点检测,这个阈值大概是60~80。阈值越低,获得的角点越多。
        #normalized是一个布尔数值,默认是False,可以匹配目标特征的多种大小(比ncc模版匹配效果灵活)。如果设置为True,关闭特征点检测的多比例结果,仅匹配目标特征的一种大小(类似于模版匹配),但是运算速度会更快一些。
        #scale_factor是一个大于1.0的浮点数。这个数值越高,检测速度越快,但是匹配准确率会下降。一般在1.35~1.5左右最佳。
        #max_keypoints是一个物体可提取的特征点的最大数量。如果一个物体的特征点太多导致RAM内存爆掉,减小这个数值。
        #corner_detector是特征点检测采取的算法,默认是AGAST算法。FAST算法会更快但是准确率会下降。
        draw_keypoints(img, kpts1)
        #画出此时的目标特征
    else:
        #当与最开始的目标特征进行匹配时,默认设置normalized=True,只匹配目标特征的一种大小。
        # NOTE: When extracting keypoints to match the first descriptor, we use normalized=True to extract
        # keypoints from the first scale only, which will match one of the scales in the first descriptor.
        kpts2 = img.find_keypoints(max_keypoints=150, threshold=10, normalized=True)
        #如果检测到特征物体
        if (kpts2):
            #匹配当前找到的特征和最初的目标特征的相似度
            match = image.match_descriptor(kpts1, kpts2, threshold=85)
            #image.match_descriptor(descritor0, descriptor1, threshold=70, filter_outliers=False)。本函数返回kptmatch对象。
            #threshold阈值设置匹配的准确度,用来过滤掉有歧义的匹配。这个值越小,准确度越高。阈值范围0~100,默认70
            #filter_outliers默认关闭。

            #match.count()是kpt1和kpt2的匹配的近似特征点数目。
            #如果大于10,证明两个特征相似,匹配成功。
            if (match.count()>10):
                # If we have at least n "good matches"
                # Draw bounding rectangle and cross.
                #在匹配到的目标特征中心画十字和矩形框。
                img.draw_rectangle(match.rect())
                img.draw_cross(match.cx(), match.cy(), size=10)

            #match.theta()是匹配到的特征物体相对目标物体的旋转角度。
            print(kpts2, "matched:%d dt:%d"%(match.count(), match.theta()))
            #不建议draw_keypoints画出特征角点。
            # NOTE: uncomment if you want to draw the keypoints
            #img.draw_keypoints(kpts2, size=KEYPOINTS_SIZE, matched=True)

    # Draw FPS
    #打印帧率。
    img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))

        欢迎指正,希望对你,有所帮助!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值