【目标检测经典模型比较】--DETR RT-DETR

DETR提出了一种无后处理目标检测方法,消除了传统方法中的手动组件。RT-DETR改进了实时性能,提出混合编码器和IoU感知查询选择,实现在速度和精度上的优势。同时,文章分析了NMS对实时检测的影响并指出MMLAB训练数据集的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DETR RT-DETR

请添加图片描述

1.DETR请添加图片描述请添加图片描述

请添加图片描述

摘要: 我们提出了一种将目标检测视为直接集预测问题的新方法。我们的方法简化了检测管道,有效地消除了许多手工设计的组件,如非最大抑制过程或锚生成,这些组件显式地编码了我们对任务的先验知识。新框架的主要组成部分,称为检测变压器或DETR,是一个基于集合的全局损失,通过二部匹配强制进行唯一预测,以及一个变压器编码器-解码器架构。给定一组固定的小学习对象查询,DETR对对象和全局图像上下文的关系进行推理,以直接并行输出最终的预测集。新模型在概念上很简单,不像许多其他现代探测器那样需要专门的库。在具有挑战性的COC

### RT-DETR 目标检测网络模型介绍 #### 前言 RT-DETR 是一种基于 DETR 的实时目标检测框架,旨在提高 DETR模型的速度效率。通过改进架构设计以及优化实现方式,使得该模型能够在保持较高精度的同时实现实时处理能力。 #### 架构特点 RT-DETR 主要采用了 Transformer 结构来替代传统卷积神经网络中的特征提取部分[^1]。具体来说: - **编码器-解码器结构**:采用多层堆叠的自注意力机制(Self-Attention Mechanism),能够捕捉图像全局上下文信息; - **位置嵌入**:引入可学习的位置编码向量,帮助模型理解不同物体之间的相对空间关系; - **查询键值对生成**:不同于原始 DETR 中固定的查询数量设置,在 RT-DETR 中动态调整查询数目以适应不同的输入尺寸; - **轻量化设计**:为了满足实际应用需求,特别针对移动端设备进行了参数裁剪技术简化工作,从而降低了计算复杂度并提高了运行速度。 #### 安装与使用流程概述 对于想要尝试或开发基于此技术的应用程序开发者而言,可以按照以下步骤操作: ##### 环境搭建 1. 安装 PaddlePaddle 深度学习平台作为底层支持库; 2. 下载并配置好 PaddleDetection 工具包用于构建训练环境; ##### 数据集准备 3. 准备所需的数据集,并将其转换成适合喂给模型的形式; ##### 模型选择与定制化修改 4. 根据应用场景挑选合适的预训练模型版本; 5. 对选定的基础模型做必要的结构调整或是超参调优; ##### 训练过程管理 6. 启动训练脚本执行迭代更新直至收敛稳定; ##### 测试评估性能表现 7. 使用验证集检验最终成果的质量水平; 8. 导出 ONNX 格式的推理引擎以便跨平台移植部署[^2]。 #### 解决常见问题的经验分享 当遇到某些特定挑战比如不借助预训练权重的情况下难以获得有效结果等问题时,可以通过借鉴已有解决方案来进行针对性调试。例如加载官方提供的高质量初始化权值文件能显著改善新数据集上的泛化能力;而对于 TensorRT 推理过程中可能出现的结果异常,则需深入分析内部逻辑找出潜在漏洞加以修复[^3]。 ```python import paddle from paddledet.core.workspace import load_config, merge_config from paddledet.engine.trainer import Trainer as DetrTrainer config_path = 'path/to/config' model_weights = 'pretrained_model.pdparams' cfg = load_config(config_path) merge_config(cfg) trainer = DetrTrainer(cfg=cfg) trainer.load_weights(model_weights) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值