论文学习:RT-DETR

RT-DETR

摘要

  • DETR取得显著性能,但高成本计算使其无法发挥无NMS的优势,无法实际应用。
  • 本文分析了NMS对准确性和速度的负面影响,并建立端到端的速度基准。
  • 第一个实时端到端检测器,高效处理多尺度特征,并提出IoU-aware query selection,向解码器提供了更高质量的初始object queries
  • 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
  • 速度和精度都优于相同规模最先进的YOLO检测器。

介绍

  • 尽管多尺度特征的引入有利于加速训练收敛和提高性能[49],但它也会导致编码器中序列长度的显著增加。
  • 设计了高效的混合编码器来取代原来的transformer编码器。解耦了多尺度特征的尺度内交互和尺度间融合。
  • 解码器的object queries初始化方案对检测性能至关重要,提出了IoU-aware query selection,通过在训练期间提供IOU约束来向解码器提供高质量的初始object queries
  • 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
  • 文章贡献:1.第一个实时端到端对象检测器,速度精度达到SOTA。2.分析了NMS的影响。3.通过调整解码器层数,灵活调整推理速度不需要重新训练。

在这里插入图片描述

相关工作

  • 实时对象检测
### RT-DETR论文 RT-DETR 是一种基于 DETR (End-to-End Object Detection with Transformers) 的实时物体检测方法,其设计旨在解决传统 DETR 推理速度较慢的问题,同时保持高性能的目标检测能力[^1]。该模型通过优化架构和引入高效的 Transformer 结构,在不依赖非极大值抑制 (NMS) 的情况下实现了更快的推理时间,并显著提升了检测精度[^2]。 论文的具体信息如下: - **标题**: *DETRs Beat YOLOs on Real-time Object Detection* - **链接**: [https://arxiv.org/pdf/2304.08069.pdf](https://arxiv.org/pdf/2304.08069.pdf) 此论文详细介绍了如何改进传统的 DETR 架构以适应实时场景的需求,以及如何利用硬件加速技术进一步提高效率。此外,论文还提供了实验对比分析,展示了 RT-DETR 在多个公开数据集上的优越表现。 如果希望深入研究其实现细节,可以参考官方开源代码库: ```plaintext Code: https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rtdet ``` 配置文件 `rtdetr-resnet50.yaml` 提供了一个基础框架,用户可以根据自己的需求调整参数设置,例如目标类别数 (`nc`) 等[^3]。 ### 示例代码片段 以下是创建自定义配置的一个简单例子: ```yaml # rtdetr-ResNetLayer_MLLA.yaml 配置示例 Base: rtdetr-resnet50.yaml Model: Backbone: Name: ResNet Depth: 50 Neck: Name: MLLA OutChannels: [256, 512, 1024] Head: NumClasses: ${your_data_nc} # 替换为目标类别的数量 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值