RT-DETR
摘要
- DETR取得显著性能,但高成本计算使其无法发挥无NMS的优势,无法实际应用。
- 本文分析了NMS对准确性和速度的负面影响,并建立端到端的速度基准。
- 第一个实时端到端检测器,高效处理多尺度特征,并提出IoU-aware query selection,向解码器提供了更高质量的初始object queries
- 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
- 速度和精度都优于相同规模最先进的YOLO检测器。
介绍
- 尽管多尺度特征的引入有利于加速训练收敛和提高性能[49],但它也会导致编码器中序列长度的显著增加。
- 设计了高效的混合编码器来取代原来的transformer编码器。解耦了多尺度特征的尺度内交互和尺度间融合。
- 解码器的object queries初始化方案对检测性能至关重要,提出了IoU-aware query selection,通过在训练期间提供IOU约束来向解码器提供高质量的初始object queries
- 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
- 文章贡献:1.第一个实时端到端对象检测器,速度精度达到SOTA。2.分析了NMS的影响。3.通过调整解码器层数,灵活调整推理速度不需要重新训练。
相关工作
- 实时对象检测