论文学习:RT-DETR

RT-DETR

摘要

  • DETR取得显著性能,但高成本计算使其无法发挥无NMS的优势,无法实际应用。
  • 本文分析了NMS对准确性和速度的负面影响,并建立端到端的速度基准。
  • 第一个实时端到端检测器,高效处理多尺度特征,并提出IoU-aware query selection,向解码器提供了更高质量的初始object queries
  • 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
  • 速度和精度都优于相同规模最先进的YOLO检测器。

介绍

  • 尽管多尺度特征的引入有利于加速训练收敛和提高性能[49],但它也会导致编码器中序列长度的显著增加。
  • 设计了高效的混合编码器来取代原来的transformer编码器。解耦了多尺度特征的尺度内交互和尺度间融合。
  • 解码器的object queries初始化方案对检测性能至关重要,提出了IoU-aware query selection,通过在训练期间提供IOU约束来向解码器提供高质量的初始object queries
  • 可以灵活调整解码器层数来调整推理速度,不需要重新训练。
  • 文章贡献:1.第一个实时端到端对象检测器,速度精度达到SOTA。2.分析了NMS的影响。3.通过调整解码器层数,灵活调整推理速度不需要重新训练。

在这里插入图片描述

相关工作

  • 实时对象检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值