【数学建模】简单的优化模型-2 森林救火

      森林救火

        背景:森林失火后,要确定派出消防队员的数量队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小,综合考虑损失费和救援费,确定队员数量。

        问题分析:费用分为损失费和救援费,损失费正比于森林烧毁面积,森林烧毁面积与失火灭火时间有关,灭火时间取决于消防队员数目;救援费分为两部分,灭火器材损耗及消防队员薪资(与队员人数和灭火所用时间有关),运送队员和器材一次性支出(与队员人数有关)。

        模型假设:

        模型构成:

        t_{2}-t_{1}=\frac{b}{\lambda x-\beta}=\frac{\beta t_{1}}{\lambda x-\beta} 

B(t_{2})=\frac{\beta t_{1}^{2}}{2}+\frac{\beta^{2} t_{1}^{2}}{2(\lambda x-\beta )}

C(x)=\frac{c_{1}\beta t_{1}^{2}}{2}+\frac{c_{1}\beta^2 t_{1}^{2}}{2(\lambda x-\beta)}+\frac{c_{2} \beta t_{1} x}{\lambda x-\beta}+c_{3}x

        模型求解:为求x使C(x)最小,令\frac{dC}{dx}=0,可得到 x=\frac{\beta}{\lambda}+\sqrt{\frac{c_{1}\lambda t_{1}^{2}+2c_{2}t_{1}}{2c_{3}\lambda^{2}}}

        结果解释:\frac{\beta}{\lambda} 是为了把火扑灭所需要的最少队员数,从图中也可以看出,当x>\frac{\beta}{\lambda}时,两条直线才会有交点。

        matlab代码:

clc;
clear;

syms beta lambda c1 c2 c3 t1 t2 x b

% 假设 t2 的表达式由方程1和方程2定义
eq1 = t2 - t1 == b / (lambda * x - b);
eq2 = t2 - t1 == beta * t1 / (lambda * x - b);

% 解方程求 t2 的表达式
sol_t2 = solve(eq1, t2);

% 定义总费用函数 C(x)
C = (c1 * beta^2 * t1^2  * (lambda * x - b) + c1 * beta^2 * t1^2 + 2 * c2 * beta * t1 * x + 2 * c3 * x * (lambda * x - b)) / (2 * (lambda * x - b));

% 计算 C 对 x 的一阶导数,并求解导数为零时的 x
dC_dx = diff(C, x);
optimal_x = solve(dC_dx == 0, x);

% 输出结果
fprintf('使 C(x) 最小的 x 的表达式为:\n');
disp(optimal_x);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值