yolo v3复现总结

目录

1.正样本,负样本,忽略样本的选择

1.1正样本

1.2负样本

1.3忽略样本

2.非极大值抑制Non-Maximum Suppression(NMS)

3.损失函数


1.正样本,负样本,忽略样本的选择

1.1正样本

       将每一个真实框(ground-truth box:来自于数据集中的标注 )9个先验框(anchors)计算iou,取iou最大的anchor,找到真实框的中心点所在的cell(格子),则此cell上的那个anchor负责预测此真实框,这个anchor + 此cell上的anchor调整参数(t{x},t{y},t{w},t{h} (来自于网络的输出)) 后的结果即为正样本。

9个先验框(anchors)

10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326

经验所得,共三种长宽比,分别为网络输出为52x52,26x26,13x13所对应的先验框

如:网络输出为13x13对应的先验框为116,90,   156,198,   373,326相当于把一张图片分为13x13个cell(网格),每个网格比较大,所以匹配较大的先验框

1.2负样本

        将每一个真实框与所有的预测框(所有anchor+ t{x},t{y},t{w},t{h} 生成预测框)计算iou,iou小于给定阈值的即为负样本

1.3忽略样本

        除去正样本和负样本的剩余样本即为忽略样本。

2.非极大值抑制Non-Maximum Suppression(NMS)

概念参考:https://blog.csdn.net/weixin_39263657/article/details/121780657?spm=1001.2014.3001.5506

预测阶段使用了非极大值抑制

        对于预测的同一个种类,找出置信度最大的预测框,计算其他预测框与此预测框的iou,将iou大于给定阈值的其他预测框忽略。取出置信度最大的预测框,置信度为第二的则为首,计算此与其他iou,以此类推。

3.损失函数

坐标损失(均方误差损失):计算正样本

置信度损失(交叉熵损失):计算正样本(1)和负样本(0)

分类损失(交叉熵损失):计算正样本  

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值