目录
2.非极大值抑制Non-Maximum Suppression(NMS)
1.正样本,负样本,忽略样本的选择
1.1正样本
将每一个真实框(ground-truth box:来自于数据集中的标注 )与9个先验框(anchors)计算iou,取iou最大的anchor,找到真实框的中心点所在的cell(格子),则此cell上的那个anchor负责预测此真实框,这个anchor + 此cell上的anchor调整参数( (来自于网络的输出)) 后的结果即为正样本。
9个先验框(anchors)
10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326经验所得,共三种长宽比,分别为网络输出为52x52,26x26,13x13所对应的先验框
如:网络输出为13x13对应的先验框为116,90, 156,198, 373,326相当于把一张图片分为13x13个cell(网格),每个网格比较大,所以匹配较大的先验框
1.2负样本
将每一个真实框与所有的预测框(所有anchor+ 生成预测框)计算iou,iou小于给定阈值的即为负样本
1.3忽略样本
除去正样本和负样本的剩余样本即为忽略样本。
2.非极大值抑制Non-Maximum Suppression(NMS)
概念参考:https://blog.csdn.net/weixin_39263657/article/details/121780657?spm=1001.2014.3001.5506
在预测阶段使用了非极大值抑制
对于预测的同一个种类,找出置信度最大的预测框,计算其他预测框与此预测框的iou,将iou大于给定阈值的其他预测框忽略。取出置信度最大的预测框,置信度为第二的则为首,计算此与其他iou,以此类推。
3.损失函数
坐标损失(均方误差损失):计算正样本
置信度损失(交叉熵损失):计算正样本(1)和负样本(0)
分类损失(交叉熵损失):计算正样本
890

被折叠的 条评论
为什么被折叠?



