参考自:(2条消息) 睿智的目标检测26——Pytorch搭建yolo3目标检测平台_睿智的目标检测yolo3_Bubbliiiing的博客-CSDN博客
(1条消息) YOLO3输出张量解码过程_杉杉不分南北的博客-CSDN博客
(1条消息) YOLOv3详解_月光下的小白兔的博客-CSDN博客
(1条消息) YOLOv3原理详解(绝对通俗易懂)2021-07-01_YD-阿三的博客-CSDN博客
(1条消息) 官方DarkNet YOLO V3损失函数完结版_yolov3损失函数公式_just_sort的博客-CSDN博客
B站视频:Pytorch 搭建自己的YOLO3目标检测平台(Bubbliiiing 深度学习 教程)_哔哩哔哩_bilibili
YOLOV3框架
主干特征提取网络
定义一个残差结构
第一个1X1的卷积核主要用来增加通道数,在不改变图片尺寸的条件下获得更多的有效特征图,同时扩大特征图感受野,第二个3x3的卷积核主要作用是提取特征,减少计算过程中的参数量与计算量
Dark53计算过程及参数
先进行一次卷积核大小为3X3、步长为1的卷积,将通道数调整为32。然后进行5次残差卷积。
残差卷积首先进行一次卷积核大小为3X3、步长为2的卷积,该卷积会压缩输入进来的特征层的宽和高,此时我们可以获得一个输入x,之后我们再对x进行一次1X1的卷积和一次3X3的卷积,并把这个结果加上x,此时我们便构成了残差块layer。保留shape分别为(52,52,256)、(26,26,512)、(13,13,1024)的特征层,即layer3、layer4、layer5,用于FPN加强特征提取。
最后一层为全连接层。
其完整代码为:
import math from collections import OrderedDict import torch.nn as nn #---------------------------------------------------------------------# # 残差结构 # 利用一个1x1卷积下降通道数,然后利用一个3x3卷积提取特征并且上升通道数 # 最后接上一个残差边 #---------------------------------------------------------------------# class BasicBlock(nn.Module): def __init__(self, inplanes, planes): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes[0]) self.relu1 = nn.LeakyReLU(0.1) self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes[1]) self.relu2 = nn.LeakyReLU(0.1) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out += residual return out class DarkNet(nn.Module): def __init__(self, layers): super(DarkNet, self).__init__() self.inplanes = 32 # 416,416,3 -> 416,416,32 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu1 = nn.LeakyReLU(0.1) # 416,416,32 -> 208,208,64 self.layer1 = self._make_layer([32, 64], layers[0]) # 208,208,64 -> 104,104,128 self.layer2 = self._make_layer([64, 128], layers[1]) # 104,104,128 -> 52,52,256 self.layer3 = self._make_layer([128, 256], layers[2]) # 52,52,256 -> 26,26,512 self.layer4 = self._make_layer([256, 512], layers[3]) # 26,26,512 -> 13,13,1024 self.layer5 = self._make_layer([512, 1024], layers[4]) self.layers_out_filters = [64, 128, 256, 512, 1024] # 进行权值初始化 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() #---------------------------------------------------------------------# # 在每一个layer里面,首先利用一个步长为2的3x3卷积进行下采样 # 然后进行残差结构的堆叠 #---------------------------------------------------------------------# def _make_layer(self, planes, blocks): layers = [] # 下采样,步长为2,卷积核大小为3 layers.append(("ds_conv", nn.Conv2d(self.inplanes, planes[1], kernel_size=3, stride=2, padding=1, bias=False))) layers.append(("ds_bn", nn.BatchNorm2d(planes[1]))) layers.append(("ds_relu", nn.LeakyReLU(0.1))) # 加入残差结构 self.inplanes = planes[1] for i in range(0, blocks): layers.append(("residual_{}".format(i), BasicBlock(self.inplanes, planes))) return nn.Sequential(OrderedDict(layers)) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) out3 = self.layer3(x) out4 = self.layer4(out3) out5 = self.layer5(out4) return out3, out4, out5 def darknet53(): model = DarkNet([1, 2, 8, 8, 4]) return model
FPN加强特征提取
FPN特征金字塔融合是一种自下而上,自上而下,横向连接和卷积融合。
自下而上指图像通过卷积降维和提取特征的过程(特征图尺寸从大到小),自上而下(小到大)通过上采样与特征融合的方法融合多级特征图的不同语义信息。这样既拥有了高层的语义信息,又拥用了底层的轮廓信息
原理图为:
FPN加强特征提取流程图:
(13,13,1024)特征层进行5次卷积处理,一部分用于进行上采样UmSampling2d后与(52,52,256)特征层进行拼接结合,结合特征层的shape为(26,26,768);一部分再经过一次3x3卷积加上一次1x1卷积获取yolo网络的预测结果,3x3卷积的作用是特征整合,1x1卷积的作用是调整通道数。
结合特征层再次进行5次卷积处理,一部分用于进行上采样UmSampling2d后与(52,52,256)特征层进行结合,结合特征层的shape为(52,52,384);一部分再经过一次3x3卷积加上一次1x1卷积获取yolo网络的预测结果。
结合特征层再次进行5次卷积处理,再经过一次3x3卷积加上一次1x1卷积获取yolo网络的预测结果。
实现代码为:
from collections import OrderedDict import torch import torch.nn as nn from nets.darknet import darknet53 def conv2d(filter_in, filter_out, kernel_size): pad = (kernel_size - 1) // 2 if kernel_size else 0 return nn.Sequential(OrderedDict([ ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=1, padding=pad, bias=False)), ("bn", nn.BatchNorm2d(filter_out)), ("relu", nn.LeakyReLU(0.1)), ])) #------------------------------------------------------------------------# # make_last_layers里面一共有七个卷积,前五个用于提取特征。 # 后两个用于获得yolo网络的预测结果 #------------------------------------------------------------------------# def make_last_layers(filters_list, in_filters, out_filter): m = nn.Sequential( conv2d(in_filters, filters_list[0], 1), conv2d(filters_list[0], filters_list[1], 3), conv2d(filters_list[1], filters_list[0], 1), conv2d(filters_list[0], filters_list[1], 3), conv2d(filters_list[1], filters_list[0], 1), conv2d(filters_list[0], filters_list[1], 3), nn.Conv2d(filters_list[1], out_filter, kernel_size=1, stride=1, padding=0, bias=True) ) return m class YoloBody(nn.Module): def __init__(self, anchors_mask, num_classes, pretrained = False): super(YoloBody, self).__init__() #---------------------------------------------------# # 生成darknet53的主干模型 # 获得三个有效特征层,他们的shape分别是: # 52,52,256 # 26,26,512 # 13,13,1024 #---------------------------------------------------# self.backbone = darknet53() if pretrained: self.backbone.load_state_dict(torch.load("model_data/darknet53_backbone_weights.pth")) #---------------------------------------------------# # out_filters : [64, 128, 256, 512, 1024] #---------------------------------------------------# out_filters = self.backbone.layers_out_filters #------------------------------------------------------------------------# # 计算yolo_head的输出通道数,对于voc数据集而言 # final_out_filter0 = final_out_filter1 = final_out_filter2 = 75 #------------------------------------------------------------------------# self.last_layer0 = make_last_layers([512, 1024], out_filters[-1], len(anchors_mask[0]) * (num_classes + 5)) self.last_layer1_conv = conv2d(512, 256, 1) self.last_layer1_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.last_layer1 = make_last_layers([256, 512], out_filters[-2] + 256, len(anchors_mask[1]) * (num_classes + 5)) self.last_layer2_conv = conv2d(256, 128, 1) self.last_layer2_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.last_layer2 = make_last_layers([128, 256], out_filters[-3] + 128, len(anchors_mask[2]) * (num_classes + 5)) def forward(self, x): #---------------------------------------------------# # 获得三个有效特征层,他们的shape分别是: # 52,52,256;26,26,512;13,13,1024 #---------------------------------------------------# x2, x1, x0 = self.backbone(x) #---------------------------------------------------# # 第一个特征层 # out0 = (batch_size,255,13,13) #---------------------------------------------------# # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 out0_branch = self.last_layer0[:5](x0) out0 = self.last_layer0[5:](out0_branch) # 13,13,512 -> 13,13,256 -> 26,26,256 x1_in = self.last_layer1_conv(out0_branch) x1_in = self.last_layer1_upsample(x1_in) # 26,26,256 + 26,26,512 -> 26,26,768 x1_in = torch.cat([x1_in, x1], 1) #---------------------------------------------------# # 第二个特征层 # out1 = (batch_size,255,26,26) #---------------------------------------------------# # 26,26,768 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 out1_branch = self.last_layer1[:5](x1_in) out1 = self.last_layer1[5:](out1_branch) # 26,26,256 -> 26,26,128 -> 52,52,128 x2_in = self.last_layer2_conv(out1_branch) x2_in = self.last_layer2_upsample(x2_in) # 52,52,128 + 52,52,256 -> 52,52,384 x2_in = torch.cat([x2_in, x2], 1) #---------------------------------------------------# # 第一个特征层 # out3 = (batch_size,255,52,52) #---------------------------------------------------# # 52,52,384 -> 52,52,128 -> 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128 out2 = self.last_layer2(x2_in) return out0, out1, out2
预测结果解码部分
三个特征层的预测结果shape分别为:(N,13,13,75),(N,26,26,75),(N,52,52,75)
每一个有效特征层将整个图片分成与其长宽对应的网格,如(N,13,13,75)的特征层就是将整个图像分成13x13个网格;然后从每个网格中心建立多个先验框,这些框是网络预先设定好的框,网络的预测结果会判断这些框内是否包含物体,以及这个物体的种类。
由于每一个网格点都具有三个先验框,所以上述的预测结果可以reshape为:(N,13,13,3,25),(N,26,26,3,25),(N,52,52,3,25)
其中的25可以拆分为4+1+20,其中的4代表先验框的调整参数,1代表先验框内是否包含物体,20代表的是这个先验框的种类,由于VOC分了20类,所以这里是20。25包含了4+1+20,分别代表x_offset、y_offset、h和w、置信度、分类结果。但是这个预测结果并不对应着最终的预测框在图片上的位置,还需要解码才可以完成。
Yolo3解码过程包括五个阶段:缩小先验框、生成网格、生成预测框、非极大值抑制、显示预测框
为了在特征图上确定预测框的大小和位置,将先验框缩小(416/13、416/26、416/52)倍
在特征图上生成网格,根据输出张量,确定预测框的位置和大小;然后将坐标和宽高信息,放大(416/13、416/26、416/52)倍,在原图中显示;最后,将原图恢复至原来的大小
得到最终的预测结果后还要进行得分排序与非极大抑制筛选。
这一部分基本上是所有目标检测通用的部分。其对于每一个类进行判别:
取出每一类得分大于self.obj_threshold的框和得分。
利用框的位置和得分进行非极大抑制。
下面是各个子函数的解释:
decode_box是一个解码函数,用于将网络输出的预测结果进行解码和处理,生成目标框的位置、置信度以及类别预测结果。其实现步骤为:
函数首先定义了一个空列表 outputs,用于存储解码后的结果,通过一个 for 循环对输入进行逐个处理。在循环中,首先获取了输入的一些参数,如批大小、输入图像的高度和宽度以及与当前输入关联的锚框;接下来,对输入进行形状变换,并进行维度转换。然后,使用 sigmoid 函数对预测结果进行处理,得到归一化的中心坐标 x 和 y,宽度和高度的回归值 w 和 h,以及边界框的置信度 conf 和类别预测概率 pred_cls,这些结果都是通过对预测结果张量的切片操作得到的。
根据当前输入的尺度生成网格坐标,生成网格坐标 grid_x 和 grid_y,分别表示在 x 和 y 方向上平均分布的网格点坐标,同时,根据当前输入的锚框尺度生成了锚框的宽度和高度 anchor_w 和 anchor_h。
根据预测结果、网格坐标和锚框尺度计算出预测的边界框坐标,通过与输入的形状相同的预测边界框张量 pred_boxes,分别计算出边界框的中心坐标 x.data+grid_x 和 y.data+grid_y,以及边界框的宽度和高度 torch.exp(w.data)*anchor_w 和 torch.exp(h.data)*anchor_h。
将相关信息拼接在一起,得到形状为 (batch_size, num_anchors, 5 + num_classes) 的输出张量 output,其中,前四列是归一化的边界框坐标,第五列是置信度,剩余的列是类别预测概率,将 output.data 添加到 outputs 列表中,并最终返回 outputs。这样就完成了对模型输出结果的解码过程。
yolo_correct_boxes函数用于校正YOLO模型预测出来的边界框,使其适应原始图像。其实现步骤为:
首先通过反转维度的顺序,将y轴放在前面,这样可以方便后续计算预测框和图像的宽高相乘。
将input_shape和image_shape转换成NumPy数组。
如果图像经过了Letterbox缩放,则计算缩放比例和偏移量。
将预测框的中心坐标和宽度高度根据缩放比例和偏移量进行相应的校正。
根据校正后的结果,计算出边界框的最小坐标和最大坐标。
将边界框坐标还原回原始图像尺寸范围内。
返回校正后的边界框。
non_max_suppression函数是一个非极大值抑制函数,用于对模型的预测结果进行后处理,去除冗余的边界框,并选择置信度最高的边界框作为最终的检测结果。其实现步骤为:
函数首先创建一个与预测结果相同形状的张量 box_corner,用于存储转换后的边界框坐标信息。然后,根据预测结果的归一化边界框坐标计算出边界框的左上角和右下角坐标,并将其赋值给 box_corner。
接下来,创建了一个列表 output,用于存储解码后的结果。循环遍历预测结果的每个图像的预测框。
在循环中,首先通过 torch.max() 函数找到每个预测框中置信度最高的类别标签和置信度值。
然后,根据设定的置信度阈值 conf_thres 对预测框的置信度进行筛选,生成一个掩码 conf_mask,将置信度不满足阈值的预测框移除。
接着,根据掩码取出符合要求的预测框、类别置信度和类别标签,并拼接在一起形成新的检测结果。
接下来,利用 .unique() 函数获取独特的类别标签,并通过 nms() 函数对每个类别进行非极大值抑制,去除冗余的边界框,得到保留的边界框索引 keep。
然后,根据索引 keep 选择保留的边界框,并将其赋值给 max_detections。
在最后,将 max_detections 添加到输出列表 output 的相应位置。如果 output[i] 已经有值了,则通过 torch.cat() 函数将 max_detections 追加到 output[i] 的末尾。
最后,如果 output[i] 不为空,则将其转换为 NumPy 数组,并通过调用 self.yolo_correct_boxes() 函数对边界框进行修正,得到真实图像上的坐标。最终返回 output 列表,其中存储了解码和非极大值抑制后的检测结果。
其完整代码为:
import torch import torch.nn as nn from torchvision.ops import nms import numpy as np # -------------------------------------------------------------------------------# # 这是一个用于目标检测中解码预测框的类. # 该类的作用是将模型输出的特征图转换为原始图像上的预测框,并进行后处理操作,以得到最终的检测结果。 # -------------------------------------------------------------------------------# class DecodeBox(): def __init__(self, anchors, num_classes, input_shape, anchors_mask = [[6,7,8], [3,4,5], [0,1,2]]): super(DecodeBox, self).__init__() self.anchors = anchors self.num_classes = num_classes self.bbox_attrs = 5 + num_classes self.input_shape = input_shape #-----------------------------------------------------------# # 13x13的特征层对应的anchor是[116,90],[156,198],[373,326] # 26x26的特征层对应的anchor是[30,61],[62,45],[59,119] # 52x52的特征层对应的anchor是[10,13],[16,30],[33,23] #-----------------------------------------------------------# self.anchors_mask = anchors_mask # -------------------------------------------------------------------------------# # 这是一个解码函数,用于将网络输出的预测结果进行解码和处理,生成目标框的位置、置信度以及类别预测结果。 # -------------------------------------------------------------------------------# def decode_box(self, inputs): outputs = [] for i, input in enumerate(inputs): #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 255, 13, 13 # batch_size, 255, 26, 26 # batch_size, 255, 52, 52 #-----------------------------------------------# batch_size = input.size(0) input_height = input.size(2) input_width = input.size(3) #-----------------------------------------------# # 输入为416x416时 # stride_h = stride_w = 32、16、8 #-----------------------------------------------# stride_h = self.input_shape[0] / input_height stride_w = self.input_shape[1] / input_width #-------------------------------------------------# # 此时获得的scaled_anchors大小是相对于特征层的 #-------------------------------------------------# scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors[self.anchors_mask[i]]] #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 3, 13, 13, 85 # batch_size, 3, 26, 26, 85 # batch_size, 3, 52, 52, 85 #-----------------------------------------------# prediction = input.view(batch_size, len(self.anchors_mask[i]), self.bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous() #-----------------------------------------------# # 先验框的中心位置的调整参数 #-----------------------------------------------# x = torch.sigmoid(prediction[..., 0]) y = torch.sigmoid(prediction[..., 1]) #-----------------------------------------------# # 先验框的宽高调整参数 #-----------------------------------------------# w = prediction[..., 2] h = prediction[..., 3] #-----------------------------------------------# # 获得置信度,是否有物体 #-----------------------------------------------# conf = torch.sigmoid(prediction[..., 4]) #-----------------------------------------------# # 种类置信度 #-----------------------------------------------# pred_cls = torch.sigmoid(prediction[..., 5:]) FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor # ----------------------------------------------------------# # 生成网格,先验框中心,网格左上角 # batch_size,3,13,13 # ----------------------------------------------------------# grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(x.shape).type(FloatTensor) grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(y.shape).type(FloatTensor) # ----------------------------------------------------------# # 按照网格格式生成先验框的宽高 # batch_size,3,13,13 # ----------------------------------------------------------# anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0])) anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1])) anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape) anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape) #----------------------------------------------------------# # 利用预测结果对先验框进行调整 # 首先调整先验框的中心,从先验框中心向右下角偏移 # 再调整先验框的宽高。 #----------------------------------------------------------# pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = x.data + grid_x pred_boxes[..., 1] = y.data + grid_y pred_boxes[..., 2] = torch.exp(w.data) * anchor_w pred_boxes[..., 3] = torch.exp(h.data) * anchor_h #----------------------------------------------------------# # 将输出结果归一化成小数的形式 #----------------------------------------------------------# _scale = torch.Tensor([input_width, input_height, input_width, input_height]).type(FloatTensor) output = torch.cat((pred_boxes.view(batch_size, -1, 4) / _scale, conf.view(batch_size, -1, 1), pred_cls.view(batch_size, -1, self.num_classes)), -1) outputs.append(output.data) return outputs # ----------------------------------------------------------# # 校正YOLO模型预测出来的边界框,使其适应原始图像 # ----------------------------------------------------------# def yolo_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image): #-----------------------------------------------------------------# # 把y轴放前面是因为方便预测框和图像的宽高进行相乘 #-----------------------------------------------------------------# box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] input_shape = np.array(input_shape) image_shape = np.array(image_shape) if letterbox_image: #-----------------------------------------------------------------# # 这里求出来的offset是图像有效区域相对于图像左上角的偏移情况 # new_shape指的是宽高缩放情况 #-----------------------------------------------------------------# new_shape = np.round(image_shape * np.min(input_shape/image_shape)) offset = (input_shape - new_shape)/2./input_shape scale = input_shape/new_shape box_yx = (box_yx - offset) * scale box_hw *= scale box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1) boxes *= np.concatenate([image_shape, image_shape], axis=-1) return boxes # ----------------------------------------------------------# # 这是一个非极大值抑制函数,用于筛选目标检测算法中的预测框。 # ----------------------------------------------------------# def non_max_suppression(self, prediction, num_classes, input_shape, image_shape, letterbox_image, conf_thres=0.5, nms_thres=0.4): #----------------------------------------------------------# # 将预测结果的格式转换成左上角右下角的格式。 # prediction [batch_size, num_anchors, 85] #----------------------------------------------------------# box_corner = prediction.new(prediction.shape) box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 prediction[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(prediction))] for i, image_pred in enumerate(prediction): #----------------------------------------------------------# # 对种类预测部分取max。 # class_conf [num_anchors, 1] 种类置信度 # class_pred [num_anchors, 1] 种类 #----------------------------------------------------------# class_conf, class_pred = torch.max(image_pred[:, 5:5 + num_classes], 1, keepdim=True) #----------------------------------------------------------# # 利用置信度进行第一轮筛选 #----------------------------------------------------------# conf_mask = (image_pred[:, 4] * class_conf[:, 0] >= conf_thres).squeeze() #----------------------------------------------------------# # 根据置信度进行预测结果的筛选 #----------------------------------------------------------# image_pred = image_pred[conf_mask] class_conf = class_conf[conf_mask] class_pred = class_pred[conf_mask] if not image_pred.size(0): continue #-------------------------------------------------------------------------# # detections [num_anchors, 7] # 7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred #-------------------------------------------------------------------------# detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1) #------------------------------------------# # 获得预测结果中包含的所有种类 #------------------------------------------# unique_labels = detections[:, -1].cpu().unique() if prediction.is_cuda: unique_labels = unique_labels.cuda() detections = detections.cuda() for c in unique_labels: #------------------------------------------# # 获得某一类得分筛选后全部的预测结果 #------------------------------------------# detections_class = detections[detections[:, -1] == c] #------------------------------------------# # 使用官方自带的非极大抑制会速度更快一些! #------------------------------------------# keep = nms( detections_class[:, :4], detections_class[:, 4] * detections_class[:, 5], nms_thres ) max_detections = detections_class[keep] # # 按照存在物体的置信度排序 # _, conf_sort_index = torch.sort(detections_class[:, 4]*detections_class[:, 5], descending=True) # detections_class = detections_class[conf_sort_index] # # 进行非极大抑制 # max_detections = [] # while detections_class.size(0): # # 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉 # max_detections.append(detections_class[0].unsqueeze(0)) # if len(detections_class) == 1: # break # ious = bbox_iou(max_detections[-1], detections_class[1:]) # detections_class = detections_class[1:][ious < nms_thres] # # 堆叠 # max_detections = torch.cat(max_detections).data # Add max detections to outputs output[i] = max_detections if output[i] is None else torch.cat((output[i], max_detections)) if output[i] is not None: output[i] = output[i].cpu().numpy() box_xy, box_wh = (output[i][:, 0:2] + output[i][:, 2:4])/2, output[i][:, 2:4] - output[i][:, 0:2] output[i][:, :4] = self.yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image) return outputs
损失函数
损失函数公式:
Loss分成三个部分:
一个是目标框位置x , y , w , h(左上角和长宽)带来的误差,也即是box带来的loss。而在box带来的loss中又分为x,y 带来的BCE Loss(上式第一项)以及w,h带来的MSE Loss(上式第二项)。(也可以用GIOU来计算)
一个是目标置信度带来的误差,也就是obj带来的loss(BCE Loss)(上式第三项与第四项)。
最后一个是类别带来的误差,也就是class带来的loss(类别数个BCE Loss)(上式最后一项)。
下面是各个函数的介绍:
MSELoss 函数的作用是计算预测值与目标值之间的均方误差,用于衡量预测值与目标值之间的差异程度。
BCELoss 函数的作用是根据预测值和目标值计算二分类问题中的二元交叉熵损失,用于衡量预测值与目标值之间的差异程度。
GIoU其原理为:
IOU = 真实框与预测框的交并比
GIoU = IoU - (enclose_area - union_area) / enclose_area
box_giou 函数的作用是计算两个矩形框之间的 GIoU 值,用于衡量它们的重叠程度和对齐程度,返回的 giou 值越大,表示两个矩形框的重叠程度越高,对齐程度越好。
forward函数是前向传播函数,该函数计算了模型的损失值。
calculate_iou函数用于计算两个边界框之间的交并比,即IOU。
get_target函数用于生成 YOLO 模型的目标标签,返回目标输出 y_true、无目标的掩码 noobj_mask 和损失函数权重调整因子 box_loss_scale,可以在训练过程中计算出模型预测与真实目标之间的损失,并进行反向传播进行参数更新。
......
完整代码为:
import math from functools import partial import numpy as np import torch import torch.nn as nn class YOLOLoss(nn.Module): # -------------------------------------------------------------------------# # anchors:目标检测模型的先验框尺寸,格式为一个列表,包含多个先验框的宽度和高度。 # num_classes:目标检测任务的类别数量。 # input_shape:目标检测模型的输入图像尺寸,格式为 [高度, 宽度]。 # -------------------------------------------------------------------------# def __init__(self, anchors, num_classes, input_shape, cuda, anchors_mask = [[6,7,8], [3,4,5], [0,1,2]]): super(YOLOLoss, self).__init__() # -----------------------------------------------------------# # 13x13的特征层对应的anchor是[116,90],[156,198],[373,326] # 26x26的特征层对应的anchor是[30,61],[62,45],[59,119] # 52x52的特征层对应的anchor是[10,13],[16,30],[33,23] # -----------------------------------------------------------# self.anchors = anchors self.num_classes = num_classes self.bbox_attrs = 5 + num_classes self.input_shape = input_shape self.anchors_mask = anchors_mask # -----------------------------------------------------------------------------------------------# # self.bbox_attrs:每个边界框(bounding box)的属性数量,包括边界框坐标、置信度和类别概率。 # self.anchors_mask:用于选择特定特征层上使用的先验框的索引列表。 # self.balance:用于调整不同部分误差权重的列表。该列表的长度应等于 len(self.anchors_mask)。 # self.box_ratio、self.obj_ratio 和 self.cls_ratio:用于调整边界框、目标物体和类别预测部分的误差权重。 # self.ignore_threshold:用于指定忽略掉与真实框 IoU 大于此阈值的预测框。 # -----------------------------------------------------------------------------------------------# self.giou = True self.balance = [0.4, 1.0, 4] self.box_ratio = 0.05 self.obj_ratio = 5 * (input_shape[0] * input_shape[1]) / (416 ** 2) self.cls_ratio = 1 * (num_classes / 80) self.ignore_threshold = 0.5 self.cuda = cuda def clip_by_tensor(self, t, t_min, t_max): t = t.float() result = (t >= t_min).float() * t + (t < t_min).float() * t_min result = (result <= t_max).float() * result + (result > t_max).float() * t_max return result def MSELoss(self, pred, target): return torch.pow(pred - target, 2) def BCELoss(self, pred, target): epsilon = 1e-7 pred = self.clip_by_tensor(pred, epsilon, 1.0 - epsilon) output = - target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred) return output def box_giou(self, b1, b2): """ 输入为: ---------- b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh 返回为: ------- giou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1) """ #----------------------------------------------------# # 求出预测框左上角右下角 #----------------------------------------------------# b1_xy = b1[..., :2] b1_wh = b1[..., 2:4] b1_wh_half = b1_wh/2. b1_mins = b1_xy - b1_wh_half b1_maxes = b1_xy + b1_wh_half #----------------------------------------------------# # 求出真实框左上角右下角 #----------------------------------------------------# b2_xy = b2[..., :2] b2_wh = b2[..., 2:4] b2_wh_half = b2_wh/2. b2_mins = b2_xy - b2_wh_half b2_maxes = b2_xy + b2_wh_half #----------------------------------------------------# # 求真实框和预测框所有的iou #----------------------------------------------------# intersect_mins = torch.max(b1_mins, b2_mins) intersect_maxes = torch.min(b1_maxes, b2_maxes) intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes)) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] b1_area = b1_wh[..., 0] * b1_wh[..., 1] b2_area = b2_wh[..., 0] * b2_wh[..., 1] union_area = b1_area + b2_area - intersect_area iou = intersect_area / union_area #----------------------------------------------------# # 找到包裹两个框的最小框的左上角和右下角 #----------------------------------------------------# enclose_mins = torch.min(b1_mins, b2_mins) enclose_maxes = torch.max(b1_maxes, b2_maxes) enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes)) #----------------------------------------------------# # 计算对角线距离 #----------------------------------------------------# enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] giou = iou - (enclose_area - union_area) / enclose_area return giou def forward(self, l, input, targets=None): # ----------------------------------------------------# # l代表的是,当前输入进来的有效特征层,是第几个有效特征层 # input的shape为 bs, 3*(5+num_classes), 13, 13 # bs, 3*(5+num_classes), 26, 26 # bs, 3*(5+num_classes), 52, 52 # targets代表的是真实框。 # ----------------------------------------------------# # --------------------------------# # 获得图片数量,特征层的高和宽 # 13和13 # --------------------------------# bs = input.size(0) in_h = input.size(2) in_w = input.size(3) # -----------------------------------------------------------------------# # 计算步长 # 每一个特征点对应原来的图片上多少个像素点 # 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点 # 如果特征层为26x26的话,一个特征点就对应原来的图片上的16个像素点 # 如果特征层为52x52的话,一个特征点就对应原来的图片上的8个像素点 # stride_h = stride_w = 32、16、8 # stride_h和stride_w都是32。 # -----------------------------------------------------------------------# stride_h = self.input_shape[0] / in_h stride_w = self.input_shape[1] / in_w # -------------------------------------------------# # 此时获得的scaled_anchors大小是相对于特征层的 # -------------------------------------------------# scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors] #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # bs, 3*(5+num_classes), 13, 13 => batch_size, 3, 13, 13, 5 + num_classes # batch_size, 3, 26, 26, 5 + num_classes # batch_size, 3, 52, 52, 5 + num_classes #-----------------------------------------------# prediction = input.view(bs, len(self.anchors_mask[l]), self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous() #-----------------------------------------------# # 先验框的中心位置的调整参数 #-----------------------------------------------# x = torch.sigmoid(prediction[..., 0]) y = torch.sigmoid(prediction[..., 1]) #-----------------------------------------------# # 先验框的宽高调整参数 #-----------------------------------------------# w = prediction[..., 2] h = prediction[..., 3] #-----------------------------------------------# # 获得置信度,是否有物体 #-----------------------------------------------# conf = torch.sigmoid(prediction[..., 4]) #-----------------------------------------------# # 种类置信度 #-----------------------------------------------# pred_cls = torch.sigmoid(prediction[..., 5:]) #-----------------------------------------------# # 获得网络应该有的预测结果 #-----------------------------------------------# y_true, noobj_mask, box_loss_scale = self.get_target(l, targets, scaled_anchors, in_h, in_w) #---------------------------------------------------------------# # 将预测结果进行解码,判断预测结果和真实值的重合程度 # 如果重合程度过大则忽略,因为这些特征点属于预测比较准确的特征点 # 作为负样本不合适 #----------------------------------------------------------------# noobj_mask, pred_boxes = self.get_ignore(l, x, y, h, w, targets, scaled_anchors, in_h, in_w, noobj_mask) if self.cuda: y_true = y_true.type_as(x) noobj_mask = noobj_mask.type_as(x) box_loss_scale = box_loss_scale.type_as(x) #--------------------------------------------------------------------------# # box_loss_scale是真实框宽高的乘积,宽高均在0-1之间,因此乘积也在0-1之间。 # 2-宽高的乘积代表真实框越大,比重越小,小框的比重更大。 #--------------------------------------------------------------------------# box_loss_scale = 2 - box_loss_scale # ---------------------------------------------------------------# # y_true:输入的真实标签,包含目标物体的位置和类别信息。 # noobj_mask:一个掩码,用于控制无目标区域的损失权重。 # box_loss_scale:真实边界框宽高的乘积,用于调整小框和大框的损失权重。 # loss:总的损失值,由定位误差损失和分类误差损失组成。 # obj_mask:目标物体的掩码,指示哪些位置存在目标物体。 # pred_boxes:预测的边界框信息。 # pred_cls:预测的类别信息。 # conf:预测的置信度信息。 # loss_loc:定位误差损失, # loss_cls:分类误差损失, # loss_conf:置信度误差损失, # ----------------------------------------------------------------# loss = 0 obj_mask = y_true[..., 4] == 1 n = torch.sum(obj_mask) if n != 0: if self.giou: #---------------------------------------------------------------# # 计算预测结果和真实结果的giou #----------------------------------------------------------------# giou = self.box_giou(pred_boxes, y_true[..., :4]).type_as(x) loss_loc = torch.mean((1 - giou)[obj_mask]) else: #-----------------------------------------------------------# # 计算中心偏移情况的loss,使用BCELoss效果好一些 #-----------------------------------------------------------# loss_x = torch.mean(self.BCELoss(x[obj_mask], y_true[..., 0][obj_mask]) * box_loss_scale[obj_mask]) loss_y = torch.mean(self.BCELoss(y[obj_mask], y_true[..., 1][obj_mask]) * box_loss_scale[obj_mask]) #-----------------------------------------------------------# # 计算宽高调整值的loss #-----------------------------------------------------------# loss_w = torch.mean(self.MSELoss(w[obj_mask], y_true[..., 2][obj_mask]) * box_loss_scale[obj_mask]) loss_h = torch.mean(self.MSELoss(h[obj_mask], y_true[..., 3][obj_mask]) * box_loss_scale[obj_mask]) loss_loc = (loss_x + loss_y + loss_h + loss_w) * 0.1 loss_cls = torch.mean(self.BCELoss(pred_cls[obj_mask], y_true[..., 5:][obj_mask])) loss += loss_loc * self.box_ratio + loss_cls * self.cls_ratio loss_conf = torch.mean(self.BCELoss(conf, obj_mask.type_as(conf))[noobj_mask.bool() | obj_mask]) loss += loss_conf * self.balance[l] * self.obj_ratio # if n != 0: # print(loss_loc * self.box_ratio, loss_cls * self.cls_ratio, loss_conf * self.balance[l] * self.obj_ratio) return loss # -----------------------------------------------------------# # 用于计算两个边界框之间的交并比 # -----------------------------------------------------------# def calculate_iou(self, _box_a, _box_b): # -----------------------------------------------------------# # 计算真实框的左上角和右下角 # -----------------------------------------------------------# b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2 b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2 # -----------------------------------------------------------# # 计算先验框获得的预测框的左上角和右下角 # -----------------------------------------------------------# b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2 b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2 # -----------------------------------------------------------# # 将真实框和预测框都转化成左上角右下角的形式 # -----------------------------------------------------------# box_a = torch.zeros_like(_box_a) box_b = torch.zeros_like(_box_b) box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2 box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2 #-----------------------------------------------------------# # A为真实框的数量,B为先验框的数量 #-----------------------------------------------------------# A = box_a.size(0) B = box_b.size(0) #-----------------------------------------------------------# # 计算交的面积 #-----------------------------------------------------------# max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) inter = inter[:, :, 0] * inter[:, :, 1] #-----------------------------------------------------------# # 计算预测框和真实框各自的面积 #-----------------------------------------------------------# area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] #-----------------------------------------------------------# # 求IOU #-----------------------------------------------------------# union = area_a + area_b - inter return inter / union # [A,B] # ---------------------------------------------------------------------------------# # 根据输入的目标框信息,计算出模型的目标输出。 # 返回目标输出 y_true、无目标的掩码 noobj_mask 和损失函数权重调整因子 box_loss_scale。 # ---------------------------------------------------------------------------------# def get_target(self, l, targets, anchors, in_h, in_w): #-----------------------------------------------------# # 计算一共有多少张图片 #-----------------------------------------------------# bs = len(targets) #-----------------------------------------------------# # 用于选取哪些先验框不包含物体 #-----------------------------------------------------# noobj_mask = torch.ones(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False) #-----------------------------------------------------# # 让网络更加去关注小目标 #-----------------------------------------------------# box_loss_scale = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False) #-----------------------------------------------------# # batch_size, 3, 13, 13, 5 + num_classes #-----------------------------------------------------# y_true = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, self.bbox_attrs, requires_grad = False) for b in range(bs): if len(targets[b])==0: continue batch_target = torch.zeros_like(targets[b]) #-------------------------------------------------------# # 计算出正样本在特征层上的中心点 #-------------------------------------------------------# batch_target[:, [0,2]] = targets[b][:, [0,2]] * in_w batch_target[:, [1,3]] = targets[b][:, [1,3]] * in_h batch_target[:, 4] = targets[b][:, 4] batch_target = batch_target.cpu() #-------------------------------------------------------# # 将真实框转换一个形式 # num_true_box, 4 #-------------------------------------------------------# gt_box = torch.FloatTensor(torch.cat((torch.zeros((batch_target.size(0), 2)), batch_target[:, 2:4]), 1)) #-------------------------------------------------------# # 将先验框转换一个形式 # 9, 4 #-------------------------------------------------------# anchor_shapes = torch.FloatTensor(torch.cat((torch.zeros((len(anchors), 2)), torch.FloatTensor(anchors)), 1)) #-------------------------------------------------------# # 计算交并比 # self.calculate_iou(gt_box, anchor_shapes) = [num_true_box, 9]每一个真实框和9个先验框的重合情况 # best_ns: # [每个真实框最大的重合度max_iou, 每一个真实框最重合的先验框的序号] #-------------------------------------------------------# best_ns = torch.argmax(self.calculate_iou(gt_box, anchor_shapes), dim=-1) for t, best_n in enumerate(best_ns): if best_n not in self.anchors_mask[l]: continue #----------------------------------------# # 判断这个先验框是当前特征点的哪一个先验框 #----------------------------------------# k = self.anchors_mask[l].index(best_n) #----------------------------------------# # 获得真实框属于哪个网格点 #----------------------------------------# i = torch.floor(batch_target[t, 0]).long() j = torch.floor(batch_target[t, 1]).long() #----------------------------------------# # 取出真实框的种类 #----------------------------------------# c = batch_target[t, 4].long() #----------------------------------------# # noobj_mask代表无目标的特征点 #----------------------------------------# noobj_mask[b, k, j, i] = 0 #----------------------------------------# # tx、ty代表中心调整参数的真实值 #----------------------------------------# if not self.giou: #----------------------------------------# # tx、ty代表中心调整参数的真实值 #----------------------------------------# y_true[b, k, j, i, 0] = batch_target[t, 0] - i.float() y_true[b, k, j, i, 1] = batch_target[t, 1] - j.float() y_true[b, k, j, i, 2] = math.log(batch_target[t, 2] / anchors[best_n][0]) y_true[b, k, j, i, 3] = math.log(batch_target[t, 3] / anchors[best_n][1]) y_true[b, k, j, i, 4] = 1 y_true[b, k, j, i, c + 5] = 1 else: #----------------------------------------# # tx、ty代表中心调整参数的真实值 #----------------------------------------# y_true[b, k, j, i, 0] = batch_target[t, 0] y_true[b, k, j, i, 1] = batch_target[t, 1] y_true[b, k, j, i, 2] = batch_target[t, 2] y_true[b, k, j, i, 3] = batch_target[t, 3] y_true[b, k, j, i, 4] = 1 y_true[b, k, j, i, c + 5] = 1 #----------------------------------------# # 用于获得xywh的比例 # 大目标loss权重小,小目标loss权重大 #----------------------------------------# box_loss_scale[b, k, j, i] = batch_target[t, 2] * batch_target[t, 3] / in_w / in_h return y_true, noobj_mask, box_loss_scale # ---------------------------------------------------------------------------------------------# # 在训练过程中,根据预测框和真实框之间的交并比,确定哪些先验框应该被忽略,即不计算其与真实框之间的损失。 # 这样可以提高模型在检测小目标时的准确性。用于计算在特征层上需要忽略的先验框(预测框)以及相应的掩码。 # ---------------------------------------------------------------------------------------------# def get_ignore(self, l, x, y, h, w, targets, scaled_anchors, in_h, in_w, noobj_mask): # -----------------------------------------------------# # 计算一共有多少张图片 # -----------------------------------------------------# bs = len(targets) # -----------------------------------------------------# # 生成网格,先验框中心,网格左上角 # -----------------------------------------------------# grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_h, 1).repeat( int(bs * len(self.anchors_mask[l])), 1, 1).view(x.shape).type_as(x) grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_w, 1).t().repeat( int(bs * len(self.anchors_mask[l])), 1, 1).view(y.shape).type_as(x) # 生成先验框的宽高 scaled_anchors_l = np.array(scaled_anchors)[self.anchors_mask[l]] anchor_w = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([0])).type_as(x) anchor_h = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([1])).type_as(x) anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape) anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape) # -------------------------------------------------------# # 计算调整后的先验框中心与宽高 # -------------------------------------------------------# pred_boxes_x = torch.unsqueeze(x + grid_x, -1) pred_boxes_y = torch.unsqueeze(y + grid_y, -1) pred_boxes_w = torch.unsqueeze(torch.exp(w) * anchor_w, -1) pred_boxes_h = torch.unsqueeze(torch.exp(h) * anchor_h, -1) pred_boxes = torch.cat([pred_boxes_x, pred_boxes_y, pred_boxes_w, pred_boxes_h], dim = -1) for b in range(bs): # -------------------------------------------------------# # 将预测结果转换一个形式 # pred_boxes_for_ignore num_anchors, 4 # -------------------------------------------------------# pred_boxes_for_ignore = pred_boxes[b].view(-1, 4) # -------------------------------------------------------# # 计算真实框,并把真实框转换成相对于特征层的大小 # gt_box num_true_box, 4 # -------------------------------------------------------# if len(targets[b]) > 0: batch_target = torch.zeros_like(targets[b]) # -------------------------------------------------------# # 计算出正样本在特征层上的中心点 # -------------------------------------------------------# batch_target[:, [0,2]] = targets[b][:, [0,2]] * in_w batch_target[:, [1,3]] = targets[b][:, [1,3]] * in_h batch_target = batch_target[:, :4].type_as(x) # -------------------------------------------------------# # 计算交并比 # anch_ious num_true_box, num_anchors # -------------------------------------------------------# anch_ious = self.calculate_iou(batch_target, pred_boxes_for_ignore) # -------------------------------------------------------# # 每个先验框对应真实框的最大重合度 # anch_ious_max num_anchors # -------------------------------------------------------# anch_ious_max, _ = torch.max(anch_ious, dim = 0) anch_ious_max = anch_ious_max.view(pred_boxes[b].size()[:3]) noobj_mask[b][anch_ious_max > self.ignore_threshold] = 0 return noobj_mask, pred_boxes # ------------------------------------------------------------------------------------------------------------------# # 在神经网络模型创建时,对卷积层和批归一化层的权重进行初始化。 # 通过适当的初始化可以帮助加速网络训练的收敛过程,并提高模型的性能和稳定性。不同的初始化方法可以根据实际情况选择,以满足不同的需求。 # ------------------------------------------------------------------------------------------------------------------# def weights_init(net, init_type='normal', init_gain = 0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and classname.find('Conv') != -1: if init_type == 'normal': torch.nn.init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': torch.nn.init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) print('initialize network with %s type' % init_type) net.apply(init_func) # ------------------------------------------------------------------------------------------------------------------# # 根据指定的学习率衰减类型和参数设置,生成一个用于计算不同迭代步数下学习率的调度器函数。 # 该函数可以在训练过程中根据实际需要动态地调整学习率,以提高模型训练的效果和稳定性。 # ------------------------------------------------------------------------------------------------------------------# def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio = 0.05, warmup_lr_ratio = 0.1, no_aug_iter_ratio = 0.05, step_num = 10): def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters): if iters <= warmup_total_iters: # lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2) + warmup_lr_start elif iters >= total_iters - no_aug_iter: lr = min_lr else: lr = min_lr + 0.5 * (lr - min_lr) * ( 1.0 + math.cos(math.pi* (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter)) ) return lr def step_lr(lr, decay_rate, step_size, iters): if step_size < 1: raise ValueError("step_size must above 1.") n = iters // step_size out_lr = lr * decay_rate ** n return out_lr if lr_decay_type == "cos": warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3) warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6) no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15) func = partial(yolox_warm_cos_lr ,lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter) else: decay_rate = (min_lr / lr) ** (1 / (step_num - 1)) step_size = total_iters / step_num func = partial(step_lr, lr, decay_rate, step_size) return func # ------------------------------------------------------------------------------------------------------------------# # 根据指定的学习率调度器函数和当前的训练轮数,动态地设置优化器的学习率。 # 通过在训练过程中调整学习率,可以控制模型在不同阶段的学习速度,从而提高模型的收敛效果和性能表现。 # ------------------------------------------------------------------------------------------------------------------# def set_optimizer_lr(optimizer, lr_scheduler_func, epoch): lr = lr_scheduler_func(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr
数据集的处理
本文使用VOC2007数据集进行训练,如果没有,可以通过Github连接下载VOC12+07的数据集。
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
下载的标签文件格式如下图所示:
我们需要从 XML 注释文件中提取出目标类别和边界框信息,并转换成特定格式的字符串,并转换成特定格式的字符串,写入到指定的文件中。如下图:
训练、验证、测试 图片占比:
(训练集+验证集):测试集 = 9:1
训练集:验证集 = 9:1
完整代码为:
import os import random import xml.etree.ElementTree as ET import numpy as np from utils.utils import get_classes # --------------------------------------------------------------------------------------------------------------------------------# # annotation_mode用于指定该文件运行时计算的内容 # annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt # annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt # annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt # --------------------------------------------------------------------------------------------------------------------------------# annotation_mode = 0 #-------------------------------------------------------------------# # 必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息 # 与训练和预测所用的classes_path一致即可 # 如果生成的2007_train.txt里面没有目标信息 # 那么就是因为classes没有设定正确 # 仅在annotation_mode为0和2的时候有效 #-------------------------------------------------------------------# classes_path = 'model_data/voc_classes.txt' #--------------------------------------------------------------------------------------------------------------------------------# # trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1 # train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1 # 仅在annotation_mode为0和1的时候有效 #--------------------------------------------------------------------------------------------------------------------------------# trainval_percent = 0.9 train_percent = 0.9 #-------------------------------------------------------# # 指向VOC数据集所在的文件夹 # 默认指向根目录下的VOC数据集 #-------------------------------------------------------# VOCdevkit_path = 'VOCdevkit' VOCdevkit_sets = [('2007', 'train'), ('2007', 'val')] classes, _ = get_classes(classes_path) #-------------------------------------------------------# # 统计目标数量 #-------------------------------------------------------# photo_nums = np.zeros(len(VOCdevkit_sets)) nums = np.zeros(len(classes)) # ----------------------------------------------------------------------------------------------------# # 从 XML 注释文件中提取出目标类别和边界框信息,并转换成特定格式的字符串,写入到指定的文件中。 # 同时,它还会更新每个类别的计数器,以统计每个类别在数据集中出现的次数。 # ----------------------------------------------------------------------------------------------------# def convert_annotation(year, image_id, list_file): in_file = open(os.path.join(VOCdevkit_path, 'VOC%s/Annotations/%s.xml'%(year, image_id)), encoding='utf-8') tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = 0 if obj.find('difficult')!=None: difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text))) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) nums[classes.index(cls)] = nums[classes.index(cls)] + 1 if __name__ == "__main__": random.seed(0) if " " in os.path.abspath(VOCdevkit_path): raise ValueError("数据集存放的文件夹路径与图片名称中不可以存在空格,否则会影响正常的模型训练,请注意修改。") if annotation_mode == 0 or annotation_mode == 1: print("Generate txt in ImageSets.") xmlfilepath = os.path.join(VOCdevkit_path, 'VOC2007/Annotations') saveBasePath = os.path.join(VOCdevkit_path, 'VOC2007/ImageSets/Main') temp_xml = os.listdir(xmlfilepath) total_xml = [] for xml in temp_xml: if xml.endswith(".xml"): total_xml.append(xml) num = len(total_xml) list = range(num) tv = int(num*trainval_percent) tr = int(tv*train_percent) trainval= random.sample(list,tv) train = random.sample(trainval,tr) print("train and val size",tv) print("train size",tr) ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w') ftest = open(os.path.join(saveBasePath,'test.txt'), 'w') ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w') fval = open(os.path.join(saveBasePath,'val.txt'), 'w') for i in list: name=total_xml[i][:-4]+'\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close() print("Generate txt in ImageSets done.") if annotation_mode == 0 or annotation_mode == 2: print("Generate 2007_train.txt and 2007_val.txt for train.") type_index = 0 for year, image_set in VOCdevkit_sets: image_ids = open(os.path.join(VOCdevkit_path, 'VOC%s/ImageSets/Main/%s.txt'%(year, image_set)), encoding='utf-8').read().strip().split() list_file = open('%s_%s.txt'%(year, image_set), 'w', encoding='utf-8') for image_id in image_ids: list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(os.path.abspath(VOCdevkit_path), year, image_id)) convert_annotation(year, image_id, list_file) list_file.write('\n') photo_nums[type_index] = len(image_ids) type_index += 1 list_file.close() print("Generate 2007_train.txt and 2007_val.txt for train done.") def printTable(List1, List2): for i in range(len(List1[0])): print("|", end=' ') for j in range(len(List1)): print(List1[j][i].rjust(int(List2[j])), end=' ') print("|", end=' ') print() str_nums = [str(int(x)) for x in nums] tableData = [ classes, str_nums ] colWidths = [0]*len(tableData) len1 = 0 for i in range(len(tableData)): for j in range(len(tableData[i])): if len(tableData[i][j]) > colWidths[i]: colWidths[i] = len(tableData[i][j]) printTable(tableData, colWidths) if photo_nums[0] <= 500: print("训练集数量小于500,属于较小的数据量,请注意设置较大的训练世代(Epoch)以满足足够的梯度下降次数(Step)。") if np.sum(nums) == 0: print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("(重要的事情说三遍)。")
网络训练
网络从0开始的训练效果会很差,因为权值太过随机,特征提取效果不明显,所以本文使用了与训练权重yolo_weights.pth。
参数有点多,代码解释很详细,大家仔细看代码哈。
完整代码为:
#-------------------------------------# # 对数据集进行训练 #-------------------------------------# import datetime import os import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.nn as nn import torch.optim as optim from torch import nn from torch.utils.data import DataLoader from nets.yolo import YoloBody from nets.yolo_training import (YOLOLoss, get_lr_scheduler, set_optimizer_lr, weights_init) from utils.callbacks import LossHistory, EvalCallback from utils.dataloader import YoloDataset, yolo_dataset_collate from utils.utils import get_anchors, get_classes, show_config from utils.utils_fit import fit_one_epoch ''' 训练自己的目标检测模型一定需要注意以下几点: 1、训练前仔细检查自己的格式是否满足要求,该库要求数据集格式为VOC格式,需要准备好的内容有输入图片和标签 输入图片为.jpg图片,无需固定大小,传入训练前会自动进行resize。 灰度图会自动转成RGB图片进行训练,无需自己修改。 输入图片如果后缀非jpg,需要自己批量转成jpg后再开始训练。 标签为.xml格式,文件中会有需要检测的目标信息,标签文件和输入图片文件相对应。 2、损失值的大小用于判断是否收敛,比较重要的是有收敛的趋势,即验证集损失不断下降,如果验证集损失基本上不改变的话,模型基本上就收敛了。 损失值的具体大小并没有什么意义,大和小只在于损失的计算方式,并不是接近于0才好。如果想要让损失好看点,可以直接到对应的损失函数里面除上10000。 训练过程中的损失值会保存在logs文件夹下的loss_%Y_%m_%d_%H_%M_%S文件夹中 3、训练好的权值文件保存在logs文件夹中,每个训练世代(Epoch)包含若干训练步长(Step),每个训练步长(Step)进行一次梯度下降。 如果只是训练了几个Step是不会保存的,Epoch和Step的概念要捋清楚一下。 ''' if __name__ == "__main__": #---------------------------------# # Cuda 是否使用Cuda # 没有GPU可以设置成False #---------------------------------# Cuda = True #---------------------------------------------------------------------# # distributed 用于指定是否使用单机多卡分布式运行 # 终端指令仅支持Ubuntu。CUDA_VISIBLE_DEVICES用于在Ubuntu下指定显卡。 # Windows系统下默认使用DP模式调用所有显卡,不支持DDP。 # DP模式: # 设置 distributed = False # 在终端中输入 CUDA_VISIBLE_DEVICES=0,1 python train.py # DDP模式: # 设置 distributed = True # 在终端中输入 CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py #---------------------------------------------------------------------# distributed = False #---------------------------------------------------------------------# # sync_bn 是否使用sync_bn,DDP模式多卡可用 #---------------------------------------------------------------------# sync_bn = False #---------------------------------------------------------------------# # fp16 是否使用混合精度训练 # 可减少约一半的显存、需要pytorch1.7.1以上 #---------------------------------------------------------------------# fp16 = False #---------------------------------------------------------------------# # classes_path 指向model_data下的txt,与自己训练的数据集相关 # 训练前一定要修改classes_path,使其对应自己的数据集 #---------------------------------------------------------------------# classes_path = 'model_data/voc_classes.txt' #---------------------------------------------------------------------# # anchors_path 代表先验框对应的txt文件,一般不修改。 # anchors_mask 用于帮助代码找到对应的先验框,一般不修改。 #---------------------------------------------------------------------# anchors_path = 'model_data/yolo_anchors.txt' anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] #----------------------------------------------------------------------------------------------------------------------------# # 权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。 # 模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。 # 预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好 # # 如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。 # 同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。 # # 当model_path = ''的时候不加载整个模型的权值。 # # 此处使用的是整个模型的权重,因此是在train.py进行加载的,下面的pretrain不影响此处的权值加载。 # 如果想要让模型从主干的预训练权值开始训练,则设置model_path = '',下面的pretrain = True,此时仅加载主干。 # 如果想要让模型从0开始训练,则设置model_path = '',下面的pretrain = Fasle,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。 # # 一般来讲,网络从0开始的训练效果会很差,因为权值太过随机,特征提取效果不明显,因此非常、非常、非常不建议大家从0开始训练! # 如果一定要从0开始,可以了解imagenet数据集,首先训练分类模型,获得网络的主干部分权值,分类模型的 主干部分 和该模型通用,基于此进行训练。 #----------------------------------------------------------------------------------------------------------------------------# model_path = 'model_data/yolo_weights.pth' #------------------------------------------------------# # input_shape 输入的shape大小,一定要是32的倍数 #------------------------------------------------------# input_shape = [416, 416] #----------------------------------------------------------------------------------------------------------------------------# # pretrained 是否使用主干网络的预训练权重,此处使用的是主干的权重,因此是在模型构建的时候进行加载的。 # 如果设置了model_path,则主干的权值无需加载,pretrained的值无意义。 # 如果不设置model_path,pretrained = True,此时仅加载主干开始训练。 # 如果不设置model_path,pretrained = False,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。 #----------------------------------------------------------------------------------------------------------------------------# pretrained = False #----------------------------------------------------------------------------------------------------------------------------# # 训练分为两个阶段,分别是冻结阶段和解冻阶段。设置冻结阶段是为了满足机器性能不足的同学的训练需求。 # 冻结训练需要的显存较小,显卡非常差的情况下,可设置Freeze_Epoch等于UnFreeze_Epoch,此时仅仅进行冻结训练。 # # 在此提供若干参数设置建议,各位训练者根据自己的需求进行灵活调整: # (一)从整个模型的预训练权重开始训练: # Adam: # Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 1e-3,weight_decay = 0。(冻结) # Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 1e-3,weight_decay = 0。(不冻结) # SGD: # Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 300,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 1e-2,weight_decay = 5e-4。(冻结) # Init_Epoch = 0,UnFreeze_Epoch = 300,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 1e-2,weight_decay = 5e-4。(不冻结) # 其中:UnFreeze_Epoch可以在100-300之间调整。 # (二)从主干网络的预训练权重开始训练: # Adam: # Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 1e-3,weight_decay = 0。(冻结) # Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 1e-3,weight_decay = 0。(不冻结) # SGD: # Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 300,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 1e-2,weight_decay = 5e-4。(冻结) # Init_Epoch = 0,UnFreeze_Epoch = 300,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 1e-2,weight_decay = 5e-4。(不冻结) # 其中:由于从主干网络的预训练权重开始训练,主干的权值不一定适合目标检测,需要更多的训练跳出局部最优解。 # UnFreeze_Epoch可以在150-300之间调整,YOLOV5和YOLOX均推荐使用300。 # Adam相较于SGD收敛的快一些。因此UnFreeze_Epoch理论上可以小一点,但依然推荐更多的Epoch。 # (三)batch_size的设置: # 在显卡能够接受的范围内,以大为好。显存不足与数据集大小无关,提示显存不足(OOM或者CUDA out of memory)请调小batch_size。 # 受到BatchNorm层影响,batch_size最小为2,不能为1。 # 正常情况下Freeze_batch_size建议为Unfreeze_batch_size的1-2倍。不建议设置的差距过大,因为关系到学习率的自动调整。 #----------------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------# # 冻结阶段训练参数 # 此时模型的主干被冻结了,特征提取网络不发生改变 # 占用的显存较小,仅对网络进行微调 # Init_Epoch 模型当前开始的训练世代,其值可以大于Freeze_Epoch,如设置: # Init_Epoch = 60、Freeze_Epoch = 50、UnFreeze_Epoch = 100 # 会跳过冻结阶段,直接从60代开始,并调整对应的学习率。 # (断点续练时使用) # Freeze_Epoch 模型冻结训练的Freeze_Epoch # (当Freeze_Train=False时失效) # Freeze_batch_size 模型冻结训练的batch_size # (当Freeze_Train=False时失效) #------------------------------------------------------------------# Init_Epoch = 0 Freeze_Epoch = 50 Freeze_batch_size = 16 #------------------------------------------------------------------# # 解冻阶段训练参数 # 此时模型的主干不被冻结了,特征提取网络会发生改变 # 占用的显存较大,网络所有的参数都会发生改变 # UnFreeze_Epoch 模型总共训练的epoch # SGD需要更长的时间收敛,因此设置较大的UnFreeze_Epoch # Adam可以使用相对较小的UnFreeze_Epoch # Unfreeze_batch_size 模型在解冻后的batch_size #------------------------------------------------------------------# UnFreeze_Epoch = 300 Unfreeze_batch_size = 8 #------------------------------------------------------------------# # Freeze_Train 是否进行冻结训练 # 默认先冻结主干训练后解冻训练。 #------------------------------------------------------------------# Freeze_Train = True #------------------------------------------------------------------# # 其它训练参数:学习率、优化器、学习率下降有关 #------------------------------------------------------------------# #------------------------------------------------------------------# # Init_lr 模型的最大学习率 # Min_lr 模型的最小学习率,默认为最大学习率的0.01 #------------------------------------------------------------------# Init_lr = 1e-2 Min_lr = Init_lr * 0.01 #------------------------------------------------------------------# # optimizer_type 使用到的优化器种类,可选的有adam、sgd # 当使用Adam优化器时建议设置 Init_lr=1e-3 # 当使用SGD优化器时建议设置 Init_lr=1e-2 # momentum 优化器内部使用到的momentum参数 # weight_decay 权值衰减,可防止过拟合 # adam会导致weight_decay错误,使用adam时建议设置为0。 #------------------------------------------------------------------# optimizer_type = "sgd" momentum = 0.937 weight_decay = 5e-4 #------------------------------------------------------------------# # lr_decay_type 使用到的学习率下降方式,可选的有step、cos #------------------------------------------------------------------# lr_decay_type = "cos" #------------------------------------------------------------------# # save_period 多少个epoch保存一次权值 #------------------------------------------------------------------# save_period = 10 #------------------------------------------------------------------# # save_dir 权值与日志文件保存的文件夹 #------------------------------------------------------------------# save_dir = 'logs' #------------------------------------------------------------------# # eval_flag 是否在训练时进行评估,评估对象为验证集 # 安装pycocotools库后,评估体验更佳。 # eval_period 代表多少个epoch评估一次,不建议频繁的评估 # 评估需要消耗较多的时间,频繁评估会导致训练非常慢 # 此处获得的mAP会与get_map.py获得的会有所不同,原因有二: # (一)此处获得的mAP为验证集的mAP。 # (二)此处设置评估参数较为保守,目的是加快评估速度。 #------------------------------------------------------------------# eval_flag = True eval_period = 10 #------------------------------------------------------------------# # num_workers 用于设置是否使用多线程读取数据 # 开启后会加快数据读取速度,但是会占用更多内存 # 内存较小的电脑可以设置为2或者0 #------------------------------------------------------------------# num_workers = 4 #----------------------------------------------------# # 获得图片路径和标签 #----------------------------------------------------# train_annotation_path = '2007_train.txt' val_annotation_path = '2007_val.txt' #------------------------------------------------------# # 设置用到的显卡 #------------------------------------------------------# ngpus_per_node = torch.cuda.device_count() if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0 #----------------------------------------------------# # 获取classes和anchor #----------------------------------------------------# class_names, num_classes = get_classes(classes_path) anchors, num_anchors = get_anchors(anchors_path) #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# model = YoloBody(anchors_mask, num_classes, pretrained=pretrained) if not pretrained: weights_init(model) if model_path != '': #------------------------------------------------------# # 权值文件请看README,百度网盘下载 #------------------------------------------------------# if local_rank == 0: print('Load weights {}.'.format(model_path)) #------------------------------------------------------# # 根据预训练权重的Key和模型的Key进行加载 #------------------------------------------------------# model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location = device) load_key, no_load_key, temp_dict = [], [], {} for k, v in pretrained_dict.items(): if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v): temp_dict[k] = v load_key.append(k) else: no_load_key.append(k) model_dict.update(temp_dict) model.load_state_dict(model_dict) #------------------------------------------------------# # 显示没有匹配上的Key #------------------------------------------------------# if local_rank == 0: print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key)) print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key)) print("\n\033[1;33;44m温馨提示,head部分没有载入是正常现象,Backbone部分没有载入是错误的。\033[0m") #----------------------# # 获得损失函数 #----------------------# yolo_loss = YOLOLoss(anchors, num_classes, input_shape, Cuda, anchors_mask) #----------------------# # 记录Loss #----------------------# if local_rank == 0: time_str = datetime.datetime.strftime(datetime.datetime.now(),'%Y_%m_%d_%H_%M_%S') log_dir = os.path.join(save_dir, "loss_" + str(time_str)) loss_history = LossHistory(log_dir, model, input_shape=input_shape) else: loss_history = None #------------------------------------------------------------------# # torch 1.2不支持amp,建议使用torch 1.7.1及以上正确使用fp16 # 因此torch1.2这里显示"could not be resolve" #------------------------------------------------------------------# if fp16: from torch.cuda.amp import GradScaler as GradScaler scaler = GradScaler() else: scaler = None model_train = model.train() #----------------------------# # 多卡同步Bn #----------------------------# if sync_bn and ngpus_per_node > 1 and distributed: model_train = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_train) elif sync_bn: print("Sync_bn is not support in one gpu or not distributed.") if Cuda: if distributed: #----------------------------# # 多卡平行运行 #----------------------------# model_train = model_train.cuda(local_rank) model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True) else: model_train = torch.nn.DataParallel(model) cudnn.benchmark = True model_train = model_train.cuda() #---------------------------# # 读取数据集对应的txt #---------------------------# with open(train_annotation_path) as f: train_lines = f.readlines() with open(val_annotation_path) as f: val_lines = f.readlines() num_train = len(train_lines) num_val = len(val_lines) if local_rank == 0: show_config( classes_path = classes_path, anchors_path = anchors_path, anchors_mask = anchors_mask, model_path = model_path, input_shape = input_shape, \ Init_Epoch = Init_Epoch, Freeze_Epoch = Freeze_Epoch, UnFreeze_Epoch = UnFreeze_Epoch, Freeze_batch_size = Freeze_batch_size, Unfreeze_batch_size = Unfreeze_batch_size, Freeze_Train = Freeze_Train, \ Init_lr = Init_lr, Min_lr = Min_lr, optimizer_type = optimizer_type, momentum = momentum, lr_decay_type = lr_decay_type, \ save_period = save_period, save_dir = save_dir, num_workers = num_workers, num_train = num_train, num_val = num_val ) #---------------------------------------------------------# # 总训练世代指的是遍历全部数据的总次数 # 总训练步长指的是梯度下降的总次数 # 每个训练世代包含若干训练步长,每个训练步长进行一次梯度下降。 # 此处仅建议最低训练世代,上不封顶,计算时只考虑了解冻部分 #----------------------------------------------------------# wanted_step = 5e4 if optimizer_type == "sgd" else 1.5e4 total_step = num_train // Unfreeze_batch_size * UnFreeze_Epoch if total_step <= wanted_step: if num_train // Unfreeze_batch_size == 0: raise ValueError('数据集过小,无法进行训练,请扩充数据集。') wanted_epoch = wanted_step // (num_train // Unfreeze_batch_size) + 1 print("\n\033[1;33;44m[Warning] 使用%s优化器时,建议将训练总步长设置到%d以上。\033[0m"%(optimizer_type, wanted_step)) print("\033[1;33;44m[Warning] 本次运行的总训练数据量为%d,Unfreeze_batch_size为%d,共训练%d个Epoch,计算出总训练步长为%d。\033[0m"%(num_train, Unfreeze_batch_size, UnFreeze_Epoch, total_step)) print("\033[1;33;44m[Warning] 由于总训练步长为%d,小于建议总步长%d,建议设置总世代为%d。\033[0m"%(total_step, wanted_step, wanted_epoch)) #------------------------------------------------------# # 主干特征提取网络特征通用,冻结训练可以加快训练速度 # 也可以在训练初期防止权值被破坏。 # Init_Epoch为起始世代 # Freeze_Epoch为冻结训练的世代 # UnFreeze_Epoch总训练世代 # 提示OOM或者显存不足请调小Batch_size #------------------------------------------------------# if True: UnFreeze_flag = False #------------------------------------# # 冻结一定部分训练 #------------------------------------# if Freeze_Train: for param in model.backbone.parameters(): param.requires_grad = False #-------------------------------------------------------------------# # 如果不冻结训练的话,直接设置batch_size为Unfreeze_batch_size #-------------------------------------------------------------------# batch_size = Freeze_batch_size if Freeze_Train else Unfreeze_batch_size #-------------------------------------------------------------------# # 判断当前batch_size,自适应调整学习率 #-------------------------------------------------------------------# nbs = 64 lr_limit_max = 1e-3 if optimizer_type == 'adam' else 5e-2 lr_limit_min = 3e-4 if optimizer_type == 'adam' else 5e-4 Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max) Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2) #---------------------------------------# # 根据optimizer_type选择优化器 #---------------------------------------# pg0, pg1, pg2 = [], [], [] for k, v in model.named_modules(): if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) if isinstance(v, nn.BatchNorm2d) or "bn" in k: pg0.append(v.weight) elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) optimizer = { 'adam' : optim.Adam(pg0, Init_lr_fit, betas = (momentum, 0.999)), 'sgd' : optim.SGD(pg0, Init_lr_fit, momentum = momentum, nesterov=True) }[optimizer_type] optimizer.add_param_group({"params": pg1, "weight_decay": weight_decay}) optimizer.add_param_group({"params": pg2}) #---------------------------------------# # 获得学习率下降的公式 #---------------------------------------# lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) #---------------------------------------# # 判断每一个世代的长度 #---------------------------------------# epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。") #---------------------------------------# # 构建数据集加载器。 #---------------------------------------# train_dataset = YoloDataset(train_lines, input_shape, num_classes, train = True) val_dataset = YoloDataset(val_lines, input_shape, num_classes, train = False) if distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True,) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False,) batch_size = batch_size // ngpus_per_node shuffle = False else: train_sampler = None val_sampler = None shuffle = True gen = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate, sampler=train_sampler) gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate, sampler=val_sampler) #----------------------# # 记录eval的map曲线 #----------------------# if local_rank == 0: eval_callback = EvalCallback(model, input_shape, anchors, anchors_mask, class_names, num_classes, val_lines, log_dir, Cuda, \ eval_flag=eval_flag, period=eval_period) else: eval_callback = None #---------------------------------------# # 开始模型训练 #---------------------------------------# for epoch in range(Init_Epoch, UnFreeze_Epoch): #---------------------------------------# # 如果模型有冻结学习部分 # 则解冻,并设置参数 #---------------------------------------# if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train: batch_size = Unfreeze_batch_size #-------------------------------------------------------------------# # 判断当前batch_size,自适应调整学习率 #-------------------------------------------------------------------# nbs = 64 lr_limit_max = 1e-3 if optimizer_type == 'adam' else 5e-2 lr_limit_min = 3e-4 if optimizer_type == 'adam' else 5e-4 Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max) Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2) #---------------------------------------# # 获得学习率下降的公式 #---------------------------------------# lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) for param in model.backbone.parameters(): param.requires_grad = True epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。") if distributed: batch_size = batch_size // ngpus_per_node gen = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate, sampler=train_sampler) gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate, sampler=val_sampler) UnFreeze_flag = True if distributed: train_sampler.set_epoch(epoch) set_optimizer_lr(optimizer, lr_scheduler_func, epoch) fit_one_epoch(model_train, model, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) if distributed: dist.barrier() if local_rank == 0: loss_history.writer.close()
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。
图片检测函数detect_image,其功能是对输入的图像进行目标检测,并在图像上绘制检测结果。
首先,函数接受了一个image参数,表示输入的图像。然后,代码获取了输入图像的形状,并将图像转换为RGB格式,以便适应模型对RGB图像的要求。
接下来,对图像进行了一系列预处理操作。首先,使用resize_image函数将图像调整为指定的输入大小,并添加灰条以保持图像不失真。然后,将图像转换为image_data,并通过preprocess_input对图像数据进行归一化和通道转置等预处理操作。最后,将图像数据添加一个批次维度,并准备送入模型进行推理。
通过self.net对图像进行推理,得到预测结果outputs。然后,使用self.bbox_util对预测框进行解码,得到真实的边界框坐标和类别置信度。
接下来,通过非极大抑制(NMS)对预测框进行筛选,去除重叠度高的冗余框,得到最终的检测结果results。
如果results[0]为空,即没有检测到目标,则直接返回原始图像。
如果count参数为True,会对目标进行计数,并打印每个类别的数量。
如果crop参数为True,会对每个检测到的目标进行裁剪,并保存裁剪后的图像。
最后,代码使用绘图函数将每个检测到的目标在原始图像上绘制出来,包括目标框和类别信息。
最终,函数返回绘制了检测结果的图像。
检测效果图:
yolo.py完整代码为:
import colorsys import os import time import numpy as np import torch import torch.nn as nn from PIL import ImageDraw, ImageFont from nets.yolo import YoloBody from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input, resize_image, show_config) from utils.utils_bbox import DecodeBox ''' 训练自己的数据集必看注释! ''' class YOLO(object): _defaults = { #--------------------------------------------------------------------------# # 使用自己训练好的模型进行预测一定要修改model_path和classes_path! # model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt # # 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。 # 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。 # 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改 #--------------------------------------------------------------------------# "model_path" : 'model_data/yolo_weights.pth', "classes_path" : 'model_data/coco_classes.txt', #---------------------------------------------------------------------# # anchors_path代表先验框对应的txt文件,一般不修改。 # anchors_mask用于帮助代码找到对应的先验框,一般不修改。 #---------------------------------------------------------------------# "anchors_path" : 'model_data/yolo_anchors.txt', "anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]], #---------------------------------------------------------------------# # 输入图片的大小,必须为32的倍数。 #---------------------------------------------------------------------# "input_shape" : [416, 416], #---------------------------------------------------------------------# # 只有得分大于置信度的预测框会被保留下来 #---------------------------------------------------------------------# "confidence" : 0.5, #---------------------------------------------------------------------# # 非极大抑制所用到的nms_iou大小 #---------------------------------------------------------------------# "nms_iou" : 0.3, #---------------------------------------------------------------------# # 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize, # 在多次测试后,发现关闭letterbox_image直接resize的效果更好 #---------------------------------------------------------------------# "letterbox_image" : False, #-------------------------------# # 是否使用Cuda # 没有GPU可以设置成False #-------------------------------# "cuda" : True, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" #---------------------------------------------------# # 初始化YOLO #---------------------------------------------------# def __init__(self, **kwargs): self.__dict__.update(self._defaults) for name, value in kwargs.items(): setattr(self, name, value) self._defaults[name] = value #---------------------------------------------------# # 获得种类和先验框的数量 #---------------------------------------------------# self.class_names, self.num_classes = get_classes(self.classes_path) self.anchors, self.num_anchors = get_anchors(self.anchors_path) self.bbox_util = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask) #---------------------------------------------------# # 画框设置不同的颜色 #---------------------------------------------------# hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) self.generate() # ---------------------------------------------------------------# # 以表格形式打印出关键字和对应的值,展示配置的详细信息。 # ---------------------------------------------------------------# show_config(**self._defaults) #---------------------------------------------------# # 生成模型 #---------------------------------------------------# def generate(self, onnx=False): #---------------------------------------------------# # 建立yolov3模型,载入yolov3模型的权重 #---------------------------------------------------# self.net = YoloBody(self.anchors_mask, self.num_classes) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict(torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, anchors, and classes loaded.'.format(self.model_path)) if not onnx: if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda() #---------------------------------------------------# # 检测图片 #---------------------------------------------------# def detect_image(self, image, crop = False, count = False): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) if results[0] is None: return image # ------------------------------------------------------------------------------# # 从结果中提取出目标的标签(top_label)、置信度(top_conf)和边界框坐标(top_boxes) # ------------------------------------------------------------------------------# top_label = np.array(results[0][:, 6], dtype = 'int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] #---------------------------------------------------------# # 设置字体与边框厚度 #---------------------------------------------------------# font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1)) #---------------------------------------------------------# # 计数 #---------------------------------------------------------# if count: print("top_label:", top_label) classes_nums = np.zeros([self.num_classes]) for i in range(self.num_classes): num = np.sum(top_label == i) if num > 0: print(self.class_names[i], " : ", num) classes_nums[i] = num print("classes_nums:", classes_nums) #---------------------------------------------------------# # 是否进行目标的裁剪 #---------------------------------------------------------# if crop: for i, c in list(enumerate(top_label)): top, left, bottom, right = top_boxes[i] top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) dir_save_path = "img_crop" if not os.path.exists(dir_save_path): os.makedirs(dir_save_path) crop_image = image.crop([left, top, right, bottom]) crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0) print("save crop_" + str(i) + ".png to " + dir_save_path) #---------------------------------------------------------# # 图像绘制 #---------------------------------------------------------# for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = top_conf[i] top, left, bottom, right = box top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) label = label.encode('utf-8') print(label, top, left, bottom, right) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for i in range(thickness): draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font) del draw return image #---------------------------------------------------------# # 可以评估目标检测模型在给定图像上的实时处理速度,进而进行性能分析和优化。 #---------------------------------------------------------# def get_FPS(self, image, test_interval): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t1 = time.time() for _ in range(test_interval): with torch.no_grad(): #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time #------------------------------------------------------------# # 可以将目标检测结果可视化为热力图,突出显示检测到的目标区域,并保存为文件 #------------------------------------------------------------# def detect_heatmap(self, image, heatmap_save_path): import cv2 import matplotlib.pyplot as plt def sigmoid(x): y = 1.0 / (1.0 + np.exp(-x)) return y #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) plt.imshow(image, alpha=1) plt.axis('off') mask = np.zeros((image.size[1], image.size[0])) for sub_output in outputs: sub_output = sub_output.cpu().numpy() b, c, h, w = np.shape(sub_output) sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0] score = np.max(sigmoid(sub_output[..., 4]), -1) score = cv2.resize(score, (image.size[0], image.size[1])) normed_score = (score * 255).astype('uint8') mask = np.maximum(mask, normed_score) plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet") plt.axis('off') plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1) print("Save to the " + heatmap_save_path) plt.show() # -----------------------------------------------------------------------------------------------------------# # 可以将训练好的PyTorch模型转换为ONNX格式,以便在其他平台或框架中使用。同时还提供了简化模型的选项,以减少模型的大小和复杂度。 # -----------------------------------------------------------------------------------------------------------# def convert_to_onnx(self, simplify, model_path): import onnx self.generate(onnx=True) im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHW input_layer_names = ["images"] output_layer_names = ["output"] # Export the model print(f'Starting export with onnx {onnx.__version__}.') torch.onnx.export(self.net, im, f = model_path, verbose = False, opset_version = 12, training = torch.onnx.TrainingMode.EVAL, do_constant_folding = True, input_names = input_layer_names, output_names = output_layer_names, dynamic_axes = None) # Checks model_onnx = onnx.load(model_path) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # Simplify onnx if simplify: import onnxsim print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.') model_onnx, check = onnxsim.simplify( model_onnx, dynamic_input_shape=False, input_shapes=None) assert check, 'assert check failed' onnx.save(model_onnx, model_path) print('Onnx model save as {}'.format(model_path)) # --------------------------------------------------------------------------------------------------------# # 使用了一个深度学习模型对输入图像进行物体检测,并将检测结果保存到文本文件中。每行文本表示一个检测到的物体的类别、置信度和边界框坐标。 # --------------------------------------------------------------------------------------------------------# def get_map_txt(self, image_id, image, class_names, map_out_path): f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) if results[0] is None: return top_label = np.array(results[0][:, 6], dtype = 'int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = str(top_conf[i]) top, left, bottom, right = box if predicted_class not in class_names: continue f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom)))) f.close() return
predict.py完整代码为:
# -----------------------------------------------------------------------# # predict.py将单张图片预测、摄像头检测、FPS测试和目录遍历检测等功能 # 整合到了一个py文件中,通过指定mode进行模式的修改。 # -----------------------------------------------------------------------# import time import cv2 import numpy as np from PIL import Image from yolo import YOLO if __name__ == "__main__": yolo = YOLO() # ----------------------------------------------------------------------------------------------------------# # mode用于指定测试的模式: # 'predict' 表示单张图片预测,如果想对预测过程进行修改,如保存图片,截取对象等,可以先看下方详细的注释 # 'video' 表示视频检测,可调用摄像头或者视频进行检测,详情查看下方注释。 # 'fps' 表示测试fps,使用的图片是img里面的street.jpg,详情查看下方注释。 # 'dir_predict' 表示遍历文件夹进行检测并保存。默认遍历img文件夹,保存img_out文件夹,详情查看下方注释。 # 'heatmap' 表示进行预测结果的热力图可视化,详情查看下方注释。 # 'export_onnx' 表示将模型导出为onnx,需要pytorch1.7.1以上。 # ----------------------------------------------------------------------------------------------------------# mode = "predict" #-------------------------------------------------------------------------# # crop 指定了是否在单张图片预测后对目标进行截取 # count 指定了是否进行目标的计数 # crop、count仅在mode='predict'时有效 #-------------------------------------------------------------------------# crop = False count = False #----------------------------------------------------------------------------------------------------------# # video_path 用于指定视频的路径,当video_path=0时表示检测摄像头 # 想要检测视频,则设置如video_path = "xxx.mp4"即可,代表读取出根目录下的xxx.mp4文件。 # video_save_path 表示视频保存的路径,当video_save_path=""时表示不保存 # 想要保存视频,则设置如video_save_path = "yyy.mp4"即可,代表保存为根目录下的yyy.mp4文件。 # video_fps 用于保存的视频的fps # # video_path、video_save_path和video_fps仅在mode='video'时有效 # 保存视频时需要ctrl+c退出或者运行到最后一帧才会完成完整的保存步骤。 #----------------------------------------------------------------------------------------------------------# video_path = 0 video_save_path = "" video_fps = 25.0 #----------------------------------------------------------------------------------------------------------# # test_interval 用于指定测量fps的时候,图片检测的次数。理论上test_interval越大,fps越准确。 # fps_image_path 用于指定测试的fps图片 # # test_interval和fps_image_path仅在mode='fps'有效 #----------------------------------------------------------------------------------------------------------# test_interval = 100 fps_image_path = "img/street.jpg" #-------------------------------------------------------------------------# # dir_origin_path 指定了用于检测的图片的文件夹路径 # dir_save_path 指定了检测完图片的保存路径 # # dir_origin_path和dir_save_path仅在mode='dir_predict'时有效 #-------------------------------------------------------------------------# dir_origin_path = "img/" dir_save_path = "img_out/" #-------------------------------------------------------------------------# # heatmap_save_path 热力图的保存路径,默认保存在model_data下 # # heatmap_save_path仅在mode='heatmap'有效 #-------------------------------------------------------------------------# heatmap_save_path = "model_data/heatmap_vision.png" #-------------------------------------------------------------------------# # simplify 使用Simplify onnx # onnx_save_path 指定了onnx的保存路径 #-------------------------------------------------------------------------# simplify = True onnx_save_path = "model_data/models.onnx" if mode == "predict": ''' 1、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 2、如果想要获得预测框的坐标,可以进入yolo.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。 3、如果想要利用预测框截取下目标,可以进入yolo.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值 在原图上利用矩阵的方式进行截取。 4、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入yolo.detect_image函数,在绘图部分对predicted_class进行判断, 比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。 ''' while True: img = input('Input image filename:') try: image = Image.open(img) except: print('Open Error! Try again!') continue else: r_image = yolo.detect_image(image, crop = crop, count=count) r_image.show() elif mode == "video": capture = cv2.VideoCapture(video_path) if video_save_path!="": fourcc = cv2.VideoWriter_fourcc(*'XVID') size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))) out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size) ref, frame = capture.read() if not ref: raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。") fps = 0.0 while(True): t1 = time.time() # 读取某一帧 ref, frame = capture.read() if not ref: break # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) # 转变成Image frame = Image.fromarray(np.uint8(frame)) # 进行检测 frame = np.array(yolo.detect_image(frame)) # RGBtoBGR满足opencv显示格式 frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR) fps = ( fps + (1./(time.time()-t1)) ) / 2 print("fps= %.2f"%(fps)) frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("video",frame) c = cv2.waitKey(1) & 0xff if video_save_path!="": out.write(frame) if c == 27: capture.release() break print("Video Detection Done!") capture.release() if video_save_path!="": print("Save processed video to the path :" + video_save_path) out.release() cv2.destroyAllWindows() elif mode == "fps": img = Image.open(fps_image_path) tact_time = yolo.get_FPS(img, test_interval) print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1') elif mode == "dir_predict": import os from tqdm import tqdm img_names = os.listdir(dir_origin_path) for img_name in tqdm(img_names): if img_name.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')): image_path = os.path.join(dir_origin_path, img_name) image = Image.open(image_path) r_image = yolo.detect_image(image) if not os.path.exists(dir_save_path): os.makedirs(dir_save_path) r_image.save(os.path.join(dir_save_path, img_name.replace(".jpg", ".png")), quality=95, subsampling=0) elif mode == "heatmap": while True: img = input('Input image filename:') try: image = Image.open(img) except: print('Open Error! Try again!') continue else: yolo.detect_heatmap(image, heatmap_save_path) elif mode == "export_onnx": yolo.convert_to_onnx(simplify, onnx_save_path) else: raise AssertionError("Please specify the correct mode: 'predict', 'video', 'fps', 'heatmap', 'export_onnx', 'dir_predict'.")