向量运算:①点积(Dot Product,标量,大小为原两向量对应元素乘积之和)【内积/数量积】、②叉积(Cross Product,对偶/法向量,长度为原两向量平行四边形面积大小)【外积/向量积】

本文详细介绍了向量的点积(内积/数量积)和叉积(外积/向量积)。点积的定义涉及向量的模长和夹角,且当两向量垂直时,点积为0。叉积产生的是一个对偶向量,其长度等于原两向量构成的平行四边形面积,方向遵循右手定则。文中通过实例解析了点积的性质、计算夹角、投影以及叉积的计算方法。
摘要由CSDN通过智能技术生成

一、向量的点积【也称:内积/数量积(inner/scalar product)】

在这里插入图片描述

向量的内积也叫向量的数量积、点积。我们定义两个向量的内积是一个数:
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta a b =a ∣∣b cosθ
其中 θ \theta θ 是这两个向量的夹角。
对于向量的内积,最重要的一个结论是:
定理1:两向量垂直的充分必要条件是它们的内积为 0 ,即
a ⃗ ⊥ b ⃗ ⟺ a ⃗ ⋅ b ⃗ = 0 \vec{a} \perp \vec{b} \Longleftrightarrow \vec{a} \cdot \vec{b}=0 a b a b =0
这个定理我们几乎不用证明了,因为从定义来看,如果两个向量都不零向量,则只能是夹角
θ = π 2 \theta=\frac{\pi}{2} θ=2π
。而零向量的方向是任意的,零向量与任垂直何向量都垂直。
坐标下的内积:如果
a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right) a =(a1,a2,a3),b =(b1,b2,b3)
,则
a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} a b =a1b1+a2b2+a3b3
这个式子我们可以看成内积的定义,当然也可以从内积的几何定义计算得到。
两向量的夹角余弦:
cos ⁡ θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} cosθ=a ∣∣b a b
求出夹角的余弦,我们就可以通过反余弦函数求出两个向量的夹角。
内积的运算法则:

  • a ⃗ ⋅ b ⃗ = b ⃗ ⋅ a ⃗ \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} a b =b a ;
  • 25
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值