【风速预测】EMD结合LSTM风速数据预测【含Matlab源码 2523期】

本文介绍了基于经验模态分解(EMD)和长短时记忆神经网络(LSTM)的风速预测方法,通过EMD分解复杂信号,然后利用LSTM处理时间序列数据。提供了部分Matlab源码进行结果分析,展示了不同算法的预测效果对比。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、EMD-DELM简介

1 方法及原理
1.1 EMD基本原理

经验模态分解可基于数据本身,将复杂信号分解为一系列IMF和一个r(t),分解信号时,不需要预先设置任何基函数。因为这一特点,理论上EMD方法可预处理任何一种信号的数据,因此被广泛应用。

x(t)=∑fIMF,s+r(t) (1)

每个IMF分量都应满足以下2个特点:

(1)在整个时间范围内,局部极值点和过零点的数量必须相等或最多相差一个;

(2)在任何时间点,局部最大包络和局部最小包络的平均值必须为0。

IMF代表数据的固有振动模式。根据IMF的定义,IMF每个振动周期只有一个振动模式,不存在其他复杂波。作为混合序列的煤气消耗数据也可以分解为如式(1)所示的形式。分解后的IMF分量包含不同的局部特征信号。因此,利用EMD分解煤气消耗数据是可行的。

1.2 长短时记忆神经网络
LSTM在解决长时间序列相关性问题上具有独特优势,是深度学习中比较流行的方法。LSTM的内部结构由遗忘门、输入门、输出门和存储单元组成。由于其独

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值