⛄一、EMD-DELM简介
1 方法及原理
1.1 EMD基本原理
经验模态分解可基于数据本身,将复杂信号分解为一系列IMF和一个r(t),分解信号时,不需要预先设置任何基函数。因为这一特点,理论上EMD方法可预处理任何一种信号的数据,因此被广泛应用。
x(t)=∑fIMF,s+r(t) (1)
每个IMF分量都应满足以下2个特点:
(1)在整个时间范围内,局部极值点和过零点的数量必须相等或最多相差一个;
(2)在任何时间点,局部最大包络和局部最小包络的平均值必须为0。
IMF代表数据的固有振动模式。根据IMF的定义,IMF每个振动周期只有一个振动模式,不存在其他复杂波。作为混合序列的煤气消耗数据也可以分解为如式(1)所示的形式。分解后的IMF分量包含不同的局部特征信号。因此,利用EMD分解煤气消耗数据是可行的。
1.2 长短时记忆神经网络
LSTM在解决长时间序列相关性问题上具有独特优势,是深度学习中比较流行的方法。LSTM的内部结构由遗忘门、输入门、输出门和存储单元组成。由于其独