(1)提出单变量风速数据预测模型 VMD-LA-TCN
随着大规模风电并网容量日益增大,风速的间歇性和随机性导致风电功率波动,给电力系统维持动态平衡带来困难。精准的风速预测是解决这些问题的有效手段,可提高电力系统运转稳定性。深度学习模型在处理复杂时间序列问题中有优势,能学习复杂特征表示和处理长期依赖关系。本文针对单变量风速数据提出 VMD-LA-TCN 模型。该模型利用变分模态分解(VMD)对原始风速数据进行特征提取,设计 LSTM 自编码器(LA)学习原始序列到特征提取序列的特征变换,最后将特征值输入到时间卷积网络(TCN)中进行多步向前风速预测。为验证模型性能,选取三个不同采风点高度的风速数据集进行两组对比实验。结果表明,与其他八种对比模型相比,VMD-LA-TCN 模型有效提升了单变量风速序列预测精度。
(2)提出多变量风速数据预测模型 SDAE-Seq2Seq
对于多变量风速数据,本文设计了 SDAE-Seq2Seq 模型。该模型首先对多个变量进行数据预处理,利用皮尔逊相关性检验筛选出相关性强的变量。对数据归一化后,利用堆叠去噪自编码器(SDAE)从大量相关变量中自动挖掘和提取鲁棒特征,将提取的特征输入到 Seq2Seq 网络结构中进行风速预测,产生多步风速预测值。为评估模型性能,在两个不同季节时间段的风速数据集上进行三组模型有效性验证实验。实验结果表明,SDAE-Seq2Seq 有效混合了两个模块,在两个数据集上的预测性能均优于其他单一模型和混合模型。
(3)设计开发短期风速预测系统
基于上述两种模型,本文设计并开发了短期风速预测系统。该系统主要采用 Python、Bootstrap、Javascript、datart、MYSQL 等技术构建而成&#x
基于深度学习的短期风速混合预测模型设计与应用【附代码】
于 2024-10-18 16:46:59 首次发布