数值积分中关于复化中点法(Composite Midpoint Rule)的收敛阶推导

一 、复化中点法(Composite Midpoint Rule)

对于下面这个积分I(f)进行求解,我们对区间进行N等分,取每个小区间的中点x_i,用I_N(f)I(f)进行逼近.

I(f)=\int_{a}^{b}f(x)dx

I_N(f)=h\sum_{i=1}^Nf(\frac{x_i+x_{i+1}}{2}),  h=\frac{b-a}{N},x_i=a+(i+\frac{1}{2})h

二、收敛阶推导

1、考虑单个区间[x_i,x_{i+1}]上的全局误差

每个小区间长度 h=\frac{b-a}{N}  ,此时考虑f(x)x_ix_i中点\frac{x_i+x_{i+1}}{2}处进行泰勒展开:

f(x) = f(\frac{x_i + x_{i+1}}{2}) + f'(\frac{x_i + x_{i+1}}{2})(x - \frac{x_i + x_{i+1}}{2}) + \frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O((x - \frac{x_i + x_{i+1}}{2})^3) \\\\= f(\frac{x_i + x_{i+1}}{2}) + f'(\frac{x_i + x_{i+1}}{2})(x - \frac{x_i + x_{i+1}}{2}) + \frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)

将上述f(x)带入区间[x_i,x_{i+1}]上的积分\int_{x_i}^{x_{i+1}}f(x)dx,因为

\int_{x_i}^{x_{i+1}}f(x)dx\\ =\int_{x_i}^{x_{i+1}}[f(\frac{x_i + x_{i+1}}{2}) + f'(\frac{x_i + x_{i+1}}{2})(x - \frac{x_i + x_{i+1}}{2}) + \frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)]dx \\

因为区间对称性,所以有:\int_{x_i}^{x_{i+1}}f(x-\frac{x_i+x_{i+1}}{2})dx=0,所以

\int_{x_i}^{x_{i+1}}f(x)dx=\int_{x_i}^{x_{i+1}}[f(\frac{x_i + x_{i+1}}{2}) + \frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)]dx

之后我们计算区间[x_i,x_{i+1}]上的全局误差:

E_i = \int_{x_i}^{x_{i+1}} f(x) \, dx - h f(\frac{x_i+x_{i+1}}{2}) \\=\int_{x_i}^{x_{i+1}}[f(\frac{x_i + x_{i+1}}{2}) + \frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)]dx- h f(\frac{x_i+x_{i+1}}{2}) \\=hf(\frac{x_i + x_{i+1}}{2}) +\int_{x_i}^{x_{i+1}}[\frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)]dx- h f(\frac{x_i+x_{i+1}}{2}) \\=\int_{x_i}^{x_{i+1}}[\frac{f''(\frac{x_i + x_{i+1}}{2})}{2}(x - \frac{x_i + x_{i+1}}{2})^2 + O(h^3)]dx \\=\frac{h^3}{24} f''(\frac{x_i+x_{i+1}}{2}) + O(h^5)

2、之后计算[a,b]上的全局误差,推出收敛阶

E=\sum_{i=0}^{N-1}E_i= \sum_{i=0}^{n-1} \left( \frac{h^3}{24} f''(\frac{x_i+x_{i+1}}{2}) \right) + O(h^5)

如果假设f''(x)在区间[a,b]上连续,这样就有:

\exists \xi \in [a,b]  ,             s.t. \sum_{i=0}^{N-1}f''(\frac{x_i+x_{i+1}}{2})=nf''(\xi)

这样就有:

E=N\frac{h^3}{24}f''(\xi)+o(h^5)=\frac{b-a}{h}\frac{h^3}{24}f''(\xi)+o(h^5) \\=\frac{(b-a)h^2}{24}f''(\xi)+o(h^5)

由上式可以看出E\propto h^2,因此这是个二阶公式

如有不严谨和错误的地方欢迎大佬指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值