**
Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics
**
Almet, A.A., Tsai, YC., Watanabe, M. et al. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat Methods 21, 1806–1817 (2024). https://doi.org/10.1038/s41592-024-02380-w1
今天来介绍一下聂老师组的8月分出版的这篇推断细胞间流动网络的文章《从单细胞和空间转录组学推断模式驱动的细胞间流动》,这篇文章在Github上也上传了相关python包(Flowsig)可以下载使用。
方法适用数据
Flowsig在scRNA-seq和ST数据中都可以使用,不过对于scRNA-seq因为缺少空间信息,在学习因果网络的时候需要有扰动组数组(可以是疾病组,不同时间等)
基本假设
如下图所示,本方法基于如下生物学过程:
认为细胞上的受体收到配体信号后,信号影响细胞中的基因表达模块(GEMs),使得一些转录因子的生物作用发生改变,表现为影响下流的配体产生。

结果概述:
Fig. 1 | Description of the FlowSig model

Fig.1a 本图就是是上面所讲的生物学过程假设。
Fig.1b 基于scRNA-seq数据的流程图:
(1)首先根据scRNA-seq数据利用pyLIGER构建GEMs,具体的矩阵分解内容可以参考这篇文章(Townes, F.W., Engelhardt, B.E. Nonnegative spatial factorization applied to spatial genomics. Nat Methods 20, 229–238 (2023). https://doi.org/10.1038/s41592-022-01687-w),或者我之前的文章(矩阵分解)
(2)随后利用Wilcoxon秩和检验来识别控制组和扰动组的差异信号。
(3)根据条件独立测试和条件不变测试以及图学习模型得到了流入信号, GEMs,流出信号之间的因果网络。
流入信号的定义:根据现有库,把每个受体和它所对应的调控因子作为先验,计算 R 1 × T F 1 R_1 \times TF_1 R1×

最低0.47元/天 解锁文章
4506

被折叠的 条评论
为什么被折叠?



