从单细胞和空间转录组学推断模式驱动的细胞间流动(Flowsig)--生信算法笔记

**

Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics

**
Almet, A.A., Tsai, YC., Watanabe, M. et al. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat Methods 21, 1806–1817 (2024). https://doi.org/10.1038/s41592-024-02380-w1

今天来介绍一下聂老师组的8月分出版的这篇推断细胞间流动网络的文章《从单细胞和空间转录组学推断模式驱动的细胞间流动》,这篇文章在Github上也上传了相关python包(Flowsig)可以下载使用。

方法适用数据

Flowsig在scRNA-seq和ST数据中都可以使用,不过对于scRNA-seq因为缺少空间信息,在学习因果网络的时候需要有扰动组数组(可以是疾病组,不同时间等)

基本假设

如下图所示,本方法基于如下生物学过程:
认为细胞上的受体收到配体信号后,信号影响细胞中的基因表达模块(GEMs),使得一些转录因子的生物作用发生改变,表现为影响下流的配体产生。

在这里插入图片描述

结果概述:

Fig. 1 | Description of the FlowSig model

在这里插入图片描述

Fig.1a 本图就是是上面所讲的生物学过程假设。
Fig.1b 基于scRNA-seq数据的流程图:
(1)首先根据scRNA-seq数据利用pyLIGER构建GEMs,具体的矩阵分解内容可以参考这篇文章(Townes, F.W., Engelhardt, B.E. Nonnegative spatial factorization applied to spatial genomics. Nat Methods 20, 229–238 (2023). https://doi.org/10.1038/s41592-022-01687-w),或者我之前的文章(矩阵分解
(2)随后利用Wilcoxon秩和检验来识别控制组和扰动组的差异信号。
(3)根据条件独立测试和条件不变测试以及图学习模型得到了流入信号, GEMs,流出信号之间的因果网络。
流入信号的定义:根据现有库,把每个受体和它所对应的调控因子作为先验,计算 R 1 × T F 1 R_1 \times TF_1 R1×

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值